scholarly journals Mathematical Model for the Fluid-Gas Spontaneous Displacement in Nanoscale Porous Media considering the Slippage and Temperature

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Kang Liu ◽  
Zhongyue Lin ◽  
Daiyong Cao ◽  
Yingchun Wei

The fracturing fluid-gas spontaneous displacement during the fracturing process is important to investigate the shale gas production and formation damage. Temperature and slippage are the major mechanisms underlying fluid transport in the micro-/nanomatrix in shale, as reported in the previous studies. We built a fracturing fluid-gas spontaneous displacement model for the porous media with micro-/nanopores, considering two major mechanisms. Then, our spontaneous displacement model was verified by the experimental result of the typical shale samples and fracturing fluids. Finally, the influences of temperature, slip length, and pore size distribution on the spontaneous imbibition process were discussed. Slippage and temperature significantly influenced the imbibition process. Lower viscosity, higher temperature, and longer slip length increased the imbibition speed. Ignoring the temperature change and slippage will lead to significant underestimation of the imbibition process.

Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840002 ◽  
Author(s):  
YINGHAO SHEN ◽  
CAOXIONG LI ◽  
HONGKUI GE ◽  
XUEJING GUO ◽  
SHAOJUN WANG

An imbibition process of water into a matrix is required to investigate the influences of large-volume fracturing fluids on gas production of unconventional formations. Slip flow has been recognized by recent studies as a major mechanism of fluid transport in nanotubes. For nanopores in shale, a slip boundary is nonnegligible in the imbibition process. In this study, we established an analytic equation of spontaneous imbibition considering slip effects in capillaries. A spontaneous imbibition model that couples the analytic equation considering the slip effect was constructed based on fractal theory. We then used a model for various conditions, such as slip boundary, pore structure, and fractal dimension of pore tortuosity, to capture the imbibition characteristics considering the slip effect. A dynamic contact angle was integrated into the modeling. Results of our study verify that the slip boundary influences water imbibition significantly. The imbibition speed is significantly improved when slip length reaches the equivalent diameter of a tube. Therefore, disregarding the slip effect will underestimate the imbibition speed in shale samples.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hao Li ◽  
Genbo Peng

CO2 foam fracturing fluid is widely used in unconventional oil and gas production because of its easy flowback and low damage to the reservoir. Nowadays, the fracturing process of CO2 foam fracturing fluid injected by coiled tubing is widely used. However, the small diameter of coiled tubing will cause a large frictional pressure loss in the process of fluid flow, which is not beneficial to the development of fracturing construction. In this paper, the temperature and pressure calculation model of gas, liquid, and solid three-phase fluid flow in the wellbore under annulus injection is established. The model accuracy is verified by comparing the calculation results with the existing gas, solid, and gas and liquid two-phase model of CO2 fracturing. The calculation case of this paper shows that compared with the tubing injection method, the annulus injection of CO2 foam fracturing fluid reduces the friction by 3.06 MPa, and increases the wellbore pressure and temperature by 3.06 MPa and 5.77°C, respectively. Increasing the injection temperature, proppant volumetric concentration, and foam quality will increase the wellbore fluid temperature and make the CO2 transition to the supercritical state while increasing the mass flow rate will do the opposite. The research results verify the feasibility of the annulus injection of CO2 foam fracturing fluid and provide a reference for the improvement of CO2 foam fracturing technology in the field.


2014 ◽  
Vol 17 (01) ◽  
pp. 74-81 ◽  
Author(s):  
R.. Dutta ◽  
C.-H.. -H. Lee ◽  
S.. Odumabo ◽  
P.. Ye ◽  
S.C.. C. Walker ◽  
...  

Summary During hydraulic-fracturing operations in low-permeability formations, spontaneous imbibition of fracturing fluid into the rock matrix is believed to have a significant impact on the retention of water-based fracturing fluids in the neighborhood of the induced fracture. This may affect the post-fracturing productivity of the well. However, there is lack of direct experimental and visual evidence of the extent of fluid retention, evolution of the resulting imbibing-fluid front, and how they relate to potential productivity hindrance. In this paper, laboratory experiments have been carefully designed to represent the vicinity of a hydraulic fracture. The evolution of fracturing fluid leakoff is monitored as a function of space and time by use of X-ray computed tomography (CT). The X-ray CT imaging technique allows us to map saturations at controlled time intervals to monitor the migration of fracturing fluid into the reservoir formation. It is generally expected for low-permeability formations (5 to 10 md) to show strong capillary forces because of their small characteristic pore radii, but this driving mechanism is in competition with the low permeability and spatial heterogeneities found in low-permeability sands. The relevance of capillarity as a driver of fluid migration and retention in a low-permeability sand sample is interpreted visually and quantified and compared with high-permeability Berea sandstone in our experiments. It is seen that although low-permeability sands are subject to strong capillary forces, the effect can be suppressed by the low permeability of the formation and the heterogeneous nature of the sample. Nevertheless, saturation values attained as a result of spontaneous imbibition are comparable with those obtained for high-permeability samples. Leakoff of fracturing fluids during the shut-in period of a well can result in delayed gas flowback and can hinder gas production. Results from this investigation are expected to provide fundamental insight regarding critical variables affecting the retention and migration of water-based fracturing fluids in the neighborhood of hydraulic fractures, and consequently affecting the post-fracturing productivity of the well.


2020 ◽  
Vol 1 (2) ◽  
pp. 92
Author(s):  
Dimas Ramadhan ◽  
Hidayat Tulloh ◽  
Cahyadi Julianto

As fracturing materials, fracturing fluid and proppant are two very important parameters in doing hydraulic fracturing design. The combination of fractuirng fluid and proppant selection is the main focus and determinant of success in the hydraulic fracturing process. The high viscosity of the fracturing fluid will make it easier for the proppant to enter to fill the fractured parts, so that the conductivity of the fractured well will be better and can increase the folds of increase (FOI) compared to fracturing fluid with lower viscosity (Economides, 2000). This research was conducted by using the sensitivity test method on the selection of fracturing fluid combinations carried out at the TX-01 well with various sizes of proppants (namely; 12/18, 16/20, and 20/40 mesh) with the proppant selected being ceramic proppant type carbolite performed using the FracCADE simulator. Fracturing fluid was selected based on its viscosity, namely YF240OD and PrimeFRAC20 fluids with viscosity value of 4.123 cp and 171.1 cp, with a fixed pump rate of 14 bpm. The results showed that the combination of high-viscosity fluids (PrimeFRAC20) and 16/20 mesh proppant size resulted in a greater incremental fold (FOI) between the choice of another combination fracturing fluids and proppant sizes, namely 6.25.


2021 ◽  
Vol 11 (6) ◽  
pp. 2807
Author(s):  
Nediljka Gaurina-Međimurec ◽  
Vladislav Brkić ◽  
Matko Topolovec ◽  
Petar Mijić

Hydraulic fracturing operations are performed to enhance well performance and to achieve economic success from improved production rates and the ultimate reserve recovery. To achieve these goals, fracturing fluid is pumped into the well at rates and pressures that result in the creation of a hydraulic fracture. Fracturing fluid selection presents the main requirement for the successful performance of hydraulic fracturing. The selected fracturing fluid should create a fracture with sufficient width and length for proppant placement and should carry the proppant from the surface to the created fracture. To accomplish all those demands, additives are added in fluids to adjust their properties. This paper describes the classification of fracturing fluids, additives for the adjustment of fluid properties and the requirements for fluid selection. Furthermore, laboratory tests of fracturing fluid, fracture stimulation design steps are presented in the paper, as well as a few examples of fracturing fluids used in Croatia with case studies and finally, hydraulic fracturing performance and post-frac well production results. The total gas production was increased by 43% and condensate production by 106% in selected wells including wellhead pressure, which allowed for a longer production well life.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Sign in / Sign up

Export Citation Format

Share Document