scholarly journals Poly-L-Arginine Induces Apoptosis of NCI-H292 Cells via ERK1/2 Signaling Pathway

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ya-Ni Wang ◽  
Ling-Ling Zhang ◽  
Xiao-Yun Fan ◽  
Sha-Sha Wu ◽  
Sheng-Quan Zhang

Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.

2013 ◽  
Vol 304 (8) ◽  
pp. L511-L518 ◽  
Author(s):  
Shijing Fang ◽  
Anne L. Crews ◽  
Wei Chen ◽  
Joungjoa Park ◽  
Qi Yin ◽  
...  

Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.


2021 ◽  
Vol 7 (6) ◽  
pp. 468
Author(s):  
Jessica Rowley ◽  
Sara Namvar ◽  
Sara Gago ◽  
Briony Labram ◽  
Paul Bowyer ◽  
...  

Aspergillus fumigatus is an important human respiratory mould pathogen. In addition to a barrier function, airway epithelium elicits a robust defence against inhaled A. fumigatus by initiating an immune response. The manner by which A. fumigatus initiates this response and the reasons for the immunological heterogeneity with different isolates are unclear. Both direct fungal cell wall–epithelial cell interaction and secretion of soluble proteases have been proposed as possible mechanisms. Our aim was to determine the contribution of fungal proteases to the induction of epithelial IL-6 and IL-8 in response to different A. fumigatus isolates. Airway epithelial cells were exposed to conidia from a low or high protease-producing strain of A. fumigatus, and IL-6 and IL-8 gene expression and protein production were quantified. The role of proteases in cytokine production was further determined using specific protease inhibitors. The proinflammatory cytokine response correlated with conidia germination and hyphal extension. IL-8 induction was significantly reduced in the presence of matrix metalloprotease or cysteine protease inhibitors. With a high protease-producing strain of A. fumigatus, IL-6 release was metalloprotease dependent. Dectin-1 antagonism also inhibited the production of both cytokines. In conclusion, A. fumigatus-secreted proteases mediate a proinflammatory response by airway epithelial cells in a strain-dependent manner.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Youngwoo Choi ◽  
Le Duy Pham ◽  
Dong-Hyun Lee ◽  
Ga-Young Ban ◽  
Ji-Ho Lee ◽  
...  

The hypothesis of autoimmune involvement in asthma has received much recent interest. Autoantibodies, such as anti-cytokeratin (CK) 18, anti-CK19, and anti-α-enolase antibodies, react with self-antigens and are found at high levels in the sera of patients with severe asthma (SA). However, the mechanisms underlying autoantibody production in SA have not been fully determined. The present study was conducted to demonstrate that neutrophil extracellular DNA traps (NETs), cytotoxic molecules released from neutrophils, are a key player in the stimulation of airway epithelial cells (AECs) to produce autoantigens. This study showed that NETs significantly increased the intracellular expression of tissue transglutaminase (tTG) but did not affect that of CK18 in AECs. NETs induced the extracellular release of both tTG and CK18 in a concentration-dependent manner. Moreover, NETs directly degraded intracellularα-enolase into small fragments. However, antibodies against neutrophil elastase (NE) or myeloperoxidase (MPO) attenuated the effects of NETs on AECs. Furthermore, each NET isolated from healthy controls (HC), nonsevere asthma (NSA), and SA had different characteristics. Taken together, these findings suggest that AECs exposed to NETs may exhibit higher autoantigen production, especially in SA. Therefore, targeting of NETs may represent a new therapy for neutrophilic asthma with a high level of autoantigens.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ya-Ni Wang ◽  
Yu-Fei Xu ◽  
Ya-Xue Liang ◽  
Xiao-Yun Fan ◽  
Xiao-Jun Zha

Eosinophil asthma is characterized by the infiltration of eosinophils to the bronchial epithelium. The toxic cationic protein released by eosinophils, mainly major basic protein (MBP), is one of the most important causative factors of epithelium damage. Poly-L-Arginine (PLA) is a kind of synthetic cationic polypeptides, which is widely used to mimic the effects of MBP on epithelial cells in vitro. However, little is known about the changes of differentially expressed genes (DEGs) and transcriptome profiles in cationic protein stimulated epithelial cells. In this study, we compared the expression of DEGs and transcriptome profiles between PLA-treated airway epithelial cells NCI-H292 and control. The results showed that there were a total of 230 DEGs, of which 86 were upregulated and 144 were downregulated. These DEGs were further analyzed using gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results showed that the upregulated DEGs were involved in cholesterol synthesis, protein binding, and composition of cellular membranes, mainly enriched in metabolic and biosynthesis pathways. While downregulated DEGs were implicated in cell adhesion, extracellular matrix (ECM) composition and cytoskeleton and were enriched in ECM pathway. In conclusion, our research provided the mechanism of the cationic polypeptides acting on the airway epithelial cells on the basis of transcriptomic profile, and this could be regarded as important indications in unveiling the pathologic role of natural cationic proteins in the damage to epithelial cells of asthmatics.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


2002 ◽  
Vol 11 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Shahida Shahana ◽  
Caroline Kampf ◽  
Godfried M. Roomans

Background: Allergic asthma is associated with an increased number of eosinophils in the airway wall. Eosinophils secrete cationic proteins, particularly major basic protein (MBP).Aim: To investigate the effect of synthetic cationic polypeptides such as poly-L-arginine, which can mimic the effect of MBP, on airway epithelial cells.Methods: Cultured airway epithelial cells were exposed to poly-L-arginine, and effects were determined by light and electron microscopy.Results: Poly-L-arginine induced apoptosis and necrosis. Transmission electron microscopy showed mitochondrial damage and changes in the nucleus. The tight junctions were damaged, as evidenced by penetration of lanthanum. Scanning electron microscopy showed a damaged cell membrane with many pores. Microanalysis showed a significant decrease in the cellular content of magnesium, phosphorus, sodium, potassium and chlorine, and an increase in calcium. Plakoglobin immunoreactivity in the cell membrane was decreased, indicating a decrease in the number of desmosomes.Conclusions: The results point to poly-L-arginine induced membrane damage, resulting in increased permeability, loss of cell-cell contacts and generalized cell damage.


2000 ◽  
Vol 68 (9) ◽  
pp. 4907-4912 ◽  
Author(s):  
M. Remedios Mendoza-López ◽  
Cecilia Becerril-Garcia ◽  
Loriz V. Fattel-Facenda ◽  
Leticia Avila-Gonzalez ◽  
Martha E. Ruíz-Tachiquín ◽  
...  

ABSTRACT We describe here the participation of a Trichomonas vaginalis 30-kDa proteinase (CP30) with affinity to the HeLa cell surface in attachment of this parasite to host epithelial cells. The CP30 band is a cysteine proteinase because its activity was inhibited by E-64, a thiol proteinase inhibitor. In two-dimensional substrate gel electrophoresis of total extracts of the trichomonad isolate CNCD 147, three spots with proteolytic activity were detected in the 30-kDa region, in the pI range from 4.5 to 5.5. Two of the spots (pI 4.5 and 5.0) bound to the surfaces of fixed HeLa cells corresponding to the CP30 band. The immunoglobulin G fraction of the rabbit anti-CP30 antiserum that recognized a 30-kDa band by Western blotting and immunoprecipitated CP30 specifically inhibited trichomonal cytoadherence to HeLa cell monolayers in a concentration-dependent manner and reacted with CP30 at the parasite surface. CP30 degraded proteins found on the female urogenital tract, including fibronectin, collagen IV, and hemoglobin. Interestingly, CP30 digested fibronectin and collagen IV only at pH levels between 4.5 and 5.0. Moreover, trichomonosis patients whose diagnosis was confirmed by in vitro culture possessed antibody to CP30 in both sera and vaginal washes, and CP30 activity was found in vaginal washes. Our results suggest that surface CP30 is a cysteine proteinase necessary for trichomonal adherence to human epithelial cells.


2018 ◽  
Vol 112 ◽  
pp. 163-168 ◽  
Author(s):  
Cynthia M. Schwartz ◽  
Braedyn A. Dorn ◽  
Selam Habtemariam ◽  
Cynthia L. Hill ◽  
Tendy Chiang ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1281
Author(s):  
Shan Guan ◽  
Max Darmstädter ◽  
Chuanfei Xu ◽  
Joseph Rosenecker

In vitro-transcribed (IVT) mRNA has come into focus in recent years as a potential therapeutic approach for the treatment of genetic diseases. The nebulized formulations of IVT-mRNA-encoding alpha-1-antitrypsin (A1AT-mRNA) would be a highly acceptable and tolerable remedy for the protein replacement therapy for alpha-1-antitrypsin deficiency in the future. Here we show that lipoplexes containing A1AT-mRNA prepared in optimum conditions could successfully transfect human bronchial epithelial cells without significant toxicity. A reduction in transfection efficiency was observed for aerosolized lipoplexes that can be partially overcome by increasing the initial number of components. A1AT produced from cells transfected by nebulized A1AT-mRNA lipoplexes is functional and could successfully inhibit the enzyme activity of trypsin as well as elastase. Our data indicate that aerosolization of A1AT-mRNA therapy constitutes a potentially powerful means to transfect airway epithelial cells with the purpose of producing functional A1AT, while bringing along the unique advantages of IVT-mRNA.


Sign in / Sign up

Export Citation Format

Share Document