scholarly journals Effects of the cationic protein poly-L-arginine on airway epithelial cellsin vitro

2002 ◽  
Vol 11 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Shahida Shahana ◽  
Caroline Kampf ◽  
Godfried M. Roomans

Background: Allergic asthma is associated with an increased number of eosinophils in the airway wall. Eosinophils secrete cationic proteins, particularly major basic protein (MBP).Aim: To investigate the effect of synthetic cationic polypeptides such as poly-L-arginine, which can mimic the effect of MBP, on airway epithelial cells.Methods: Cultured airway epithelial cells were exposed to poly-L-arginine, and effects were determined by light and electron microscopy.Results: Poly-L-arginine induced apoptosis and necrosis. Transmission electron microscopy showed mitochondrial damage and changes in the nucleus. The tight junctions were damaged, as evidenced by penetration of lanthanum. Scanning electron microscopy showed a damaged cell membrane with many pores. Microanalysis showed a significant decrease in the cellular content of magnesium, phosphorus, sodium, potassium and chlorine, and an increase in calcium. Plakoglobin immunoreactivity in the cell membrane was decreased, indicating a decrease in the number of desmosomes.Conclusions: The results point to poly-L-arginine induced membrane damage, resulting in increased permeability, loss of cell-cell contacts and generalized cell damage.

Respirology ◽  
2009 ◽  
Vol 14 (7) ◽  
pp. 1027-1034 ◽  
Author(s):  
Motoki YOSHIDA ◽  
Katsutoshi NAKAYAMA ◽  
Hiroyasu YASUDA ◽  
Hiroshi KUBO ◽  
Kazuyoshi KUWANO ◽  
...  

2008 ◽  
Vol 82 (6) ◽  
pp. 2741-2751 ◽  
Author(s):  
W. Y. Lam ◽  
Julian W. Tang ◽  
Apple C. M. Yeung ◽  
Lawrence C. M. Chiu ◽  
Joseph J. Y. Sung ◽  
...  

ABSTRACT Avian H5N1 influenza virus causes a remarkably severe disease in humans, with an overall case fatality rate of greater than 50%. Human influenza A viruses induce apoptosis in infected cells, which can lead to organ dysfunction. To verify the role of H5N1-encoded NS1 in inducing apoptosis, the NS1 gene was cloned and expressed in human airway epithelial cells (NCI-H292 cells). The apoptotic events posttransfection were examined by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end-labeling assay, flow cytometric measurement of propidium iodide, annexin V staining, and Western blot analyses with antibodies specific for proapoptotic and antiapoptotic proteins. We demonstrated that the expression of H5N1 NS1 protein in NCI-H292 cells was sufficient to induce apoptotic cell death. Western blot analyses also showed that there was prominent cleavage of poly(ADP-ribose) polymerase and activation of caspase-3, caspase-7, and caspase-8 during the NS1-induced apoptosis. The results of caspase inhibitor assays further confirmed the involvement of caspase-dependent pathways in the NS1-induced apoptosis. Interestingly, the ability of H5N1 NS1 protein to induce apoptosis was much enhanced in cells pretreated with Fas ligand (the time posttransfection required to reach >30% apoptosis was reduced from 24 to 6 h). Furthermore, 24 h posttransfection, an increase in Fas ligand mRNA expression of about 5.6-fold was detected in cells transfected with H5N1 NS1. In conclusion, we demonstrated that the NS1 protein encoded by avian influenza A virus H5N1 induced apoptosis in human lung epithelial cells, mainly via the caspase-dependent pathway, which encourages further investigation into the potential for the NS1 protein to be a novel therapeutic target.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ya-Ni Wang ◽  
Ling-Ling Zhang ◽  
Xiao-Yun Fan ◽  
Sha-Sha Wu ◽  
Sheng-Quan Zhang

Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.


2004 ◽  
Vol 287 (3) ◽  
pp. L543-L551 ◽  
Author(s):  
Mauricio C. A. da Silva ◽  
Jean-Marie Zahm ◽  
Delphine Gras ◽  
Odile Bajolet ◽  
Michel Abely ◽  
...  

Staphylococcus aureus is a major cause of pulmonary infection, particularly in cystic fibrosis (CF) patients. However, few aspects of the interplay between S. aureus and host airway epithelial cells have been investigated thus far. We investigated by videomicroscopy the time- and bacterial concentration-dependent (104, 106, and 108CFU/ml) effect of S. aureus on adherence, internalization, and the associated damage of the airway epithelial cells. The balance between the secretion by S. aureus of the α-toxin virulence factor and by the airway cells of the antibacterial secretory leukoproteinase inhibitor (SLPI) was also analyzed. After 1 h of interaction, whatever the initial bacterial concentration, a low percentage of S. aureus (<8%) adhered to airway cells, and no airway epithelial cell damage was observed. In contrast, after 24 h of incubation, more bacteria adhered to airway epithelial cells, internalized bacteria were observed, and a bacterial concentration-dependent effect on airway cell damage was observed. At 24 h, most airway cells incubated with bacteria at 108CFU/ml exhibited a necrotic phenotype. The necrosis was preceded by a transient apoptotic process. In parallel, we observed a time- and bacterial concentration-dependent decrease in SLPI and increase in α-toxin expression. These results suggest that airway cells can defend against S. aureus in the early stages of infection. However, in later phases, there is a marked imbalance between the bactericidal capacity of host cells and bacterial virulence. These findings reinforce the potential importance of S. aureus in the pathogenicity of airway infections, including those observed early in CF patients.


Sign in / Sign up

Export Citation Format

Share Document