scholarly journals Pharmacokinetics and Tissue Distribution Study of Pinosylvin in Rats by Ultra-High-Performance Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yuhang Fu ◽  
Xiaoya Sun ◽  
Lili Wang ◽  
Suiqing Chen

Pinosylvin is a potential anti-inflammatory and antioxidant compound and the major effective medicinal ingredient in the root of Lindera reflexa Hemsl. However, few investigations have been conducted regarding the pharmacokinetics, excretion, characteristics of tissue distribution, and major metabolites of pinosylvin in rats after oral administration. To better understand the behavior and mechanisms of action underlying the activity of pinosylvin in vivo, we established a simple, sensitive, and reliable ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for quantifying pinosylvin in rat plasma, urine, feces, and various tissues (including heart, liver, spleen, lung, kidneys, large intestine, small intestine, and stomach). Noncompartmental pharmacokinetic parameters indicated that pinosylvin is rapidly distributed and taken up by tissues. The time to peak (maximum) concentration (Tmax) was 0.137 h, and the apparent elimination half-life (t1/2) was 1.347±0.01 h. The results of the tissue distribution study suggest that pinosylvin is widely distributed to various tissues; the highest concentration was observed after 10 min in the stomach, followed by the heart, lung, spleen, and kidneys. Results of the excretion study suggest that a small amount of pinosylvin is excreted from the urine and feces in the parent form; the 73 h accumulative excretion ratios of urine and feces were 0.82% and 0.11%, respectively. It is likely that pinosylvin is mostly metabolized in vivo. Nine metabolites were found, and the main metabolic pathways of pinosylvin in rats included glucuronidation, hydroxylation, and methylation. Four metabolites had higher concentrations in the stomach, suggesting that the stomach is a potential target organ of pinosylvin. In conclusion, the present study may provide a material basis for studying the pharmacological action of pinosylvin and provides meaningful information for the clinical treatment of chronic gastritis and gastric ulcers using Radix Linderae Reflexae.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5644
Author(s):  
Yixuan Feng ◽  
Lele Li ◽  
Yuxuan Li ◽  
Xinxin Zhou ◽  
Xiaoying Lin ◽  
...  

Poloxamer188 (PL188), as one of the most commonly used pharmaceutical excipients, has unique physicochemical properties and good biocompatibility, and so is playing an increasingly extensive role in the field of medicine. Currently, there are few studies on the tissue distribution of PL188 in vivo. In this study, the LC-MS method based on MSALL technique of quadrupole time of flight mass spectrometry for absolute quantitative analysis of poloxamer 188 in biological substrates was established for the first time. The tissue distribution of poloxamer188 in SD rats were studied using the established quantitative analysis method. To explore the distribution of PL188 in organs and tissues, PL188 was administered via rat tail vein at a dose of 5 mg/kg. Eight kinds of tissues including heart, liver, spleen, lung, kidney, stomach, muscle and brain of rats were collected at 0.25 h, 1 h and 4 h after administration. Tissue distributions showed the highest level was observed in kidney, then in stomach, which indicated PL188 mainly bioaccumulated in the kidney. This study can provide references for the further study of PL188.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianfei Mu ◽  
Fuping Yang ◽  
Fang Tan ◽  
Xianrong Zhou ◽  
Yanni Pan ◽  
...  

Ilex kudingcha C.J. Tseng tea and insect tea, as traditional Chinese teas, are favored for their original craftsmanship, unique flavor, and biological functionality. In this study, ultra high-performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-QqQ-MS) was used to analyze the bioactive components of the extracts of Ilex kudingcha and insect tea, and D-galactose-induced aging mice were used to compare the in vivo anti-aging effects of Ilex kudingcha and insect tea extracts. The results were remarkable, UHPLC-QqQ-MS analysis showed that ITP contains 29 ingredients, while IKDCP contains 26 ingredients. However, due to the large differences in the content of the main chemical components in IKDCP and ITP, the effects are equally different. At the same time, the in vivo research results suggesting that the anti-aging effects of IKDCP and ITP (500 mg/kg) include the regulation of viscera indices of major organs; improvement in liver, skin, and spleen tissue morphology; decreased production of inflammatory cytokines; up regulation of SOD, CAT, GSH, GSH-PX, and T-AOC and down regulation of NO and MDA levels in serum and liver tissue; reductions in the concentration of pro-inflammatory factors, and increases in the concentration of anti-inflammatory factor. RT-qPCR and western blot assay also showed that IKDCP and ITP affect anti-aging by regulating the gene and protein expression of GSH-PX, GSH1, SOD1, SOD2, and CAT. The overall results indicate that ITP is more effective in treating oxidative damage in aging mice induced by D-galactose. Thus, ITP appears to be an effective functional drink owing to its rich nutritional components and anti-aging activities.


Sign in / Sign up

Export Citation Format

Share Document