scholarly journals Data Processing and Text Mining Technologies on Electronic Medical Records: A Review

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wencheng Sun ◽  
Zhiping Cai ◽  
Yangyang Li ◽  
Fang Liu ◽  
Shengqun Fang ◽  
...  

Currently, medical institutes generally use EMR to record patient’s condition, including diagnostic information, procedures performed, and treatment results. EMR has been recognized as a valuable resource for large-scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy, and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation, and data reduction. For semistructured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (named-entity recognition) and RE (relation extraction). This paper focuses on the process of EMR processing and emphatically analyzes the key techniques. In addition, we make an in-depth study on the applications developed based on text mining together with the open challenges and research issues for future work.

Author(s):  
Wencheng Sun ◽  
Fang Liu ◽  
Zhiping Cai ◽  
Shengqun Fang ◽  
Guoyan Wang

At present, medical institutes generally use EMR to record patient's condition, including diagnostic information, procedures performed and treatment results. EMR has been recognized as a valuable resource for large scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation and data reduction. For semi-structured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (Named Entity Recognition) and RE (Relation Extraction). In this paper, we introduce the process of EMR processing, including data collection, data preprocessing, data mining, evaluation and knowledge application, analyze the current status of the key technologies, such as data preprocessing and data mining, and provide an overview of the application domains and prospects of EMR mining technologies. Finally, we summarize the existing problems in the research of EMR mining, and review the development trends.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 79 ◽  
Author(s):  
Xiaoyu Han ◽  
Yue Zhang ◽  
Wenkai Zhang ◽  
Tinglei Huang

Relation extraction is a vital task in natural language processing. It aims to identify the relationship between two specified entities in a sentence. Besides information contained in the sentence, additional information about the entities is verified to be helpful in relation extraction. Additional information such as entity type getting by NER (Named Entity Recognition) and description provided by knowledge base both have their limitations. Nevertheless, there exists another way to provide additional information which can overcome these limitations in Chinese relation extraction. As Chinese characters usually have explicit meanings and can carry more information than English letters. We suggest that characters that constitute the entities can provide additional information which is helpful for the relation extraction task, especially in large scale datasets. This assumption has never been verified before. The main obstacle is the lack of large-scale Chinese relation datasets. In this paper, first, we generate a large scale Chinese relation extraction dataset based on a Chinese encyclopedia. Second, we propose an attention-based model using the characters that compose the entities. The result on the generated dataset shows that these characters can provide useful information for the Chinese relation extraction task. By using this information, the attention mechanism we used can recognize the crucial part of the sentence that can express the relation. The proposed model outperforms other baseline models on our Chinese relation extraction dataset.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chengkun Wu ◽  
Xinyi Xiao ◽  
Canqun Yang ◽  
JinXiang Chen ◽  
Jiacai Yi ◽  
...  

Abstract Background Interactions of microbes and diseases are of great importance for biomedical research. However, large-scale of microbe–disease interactions are hidden in the biomedical literature. The structured databases for microbe–disease interactions are in limited amounts. In this paper, we aim to construct a large-scale database for microbe–disease interactions automatically. We attained this goal via applying text mining methods based on a deep learning model with a moderate curation cost. We also built a user-friendly web interface that allows researchers to navigate and query required information. Results Firstly, we manually constructed a golden-standard corpus and a sliver-standard corpus (SSC) for microbe–disease interactions for curation. Moreover, we proposed a text mining framework for microbe–disease interaction extraction based on a pretrained model BERE. We applied named entity recognition tools to detect microbe and disease mentions from the free biomedical texts. After that, we fine-tuned the pretrained model BERE to recognize relations between targeted entities, which was originally built for drug–target interactions or drug–drug interactions. The introduction of SSC for model fine-tuning greatly improved detection performance for microbe–disease interactions, with an average reduction in error of approximately 10%. The MDIDB website offers data browsing, custom searching for specific diseases or microbes, and batch downloading. Conclusions Evaluation results demonstrate that our method outperform the baseline model (rule-based PKDE4J) with an average $$F_1$$ F 1 -score of 73.81%. For further validation, we randomly sampled nearly 1000 predicted interactions by our model, and manually checked the correctness of each interaction, which gives a 73% accuracy. The MDIDB webiste is freely avaliable throuth http://dbmdi.com/index/


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
À. Bravo ◽  
M. Cases ◽  
N. Queralt-Rosinach ◽  
F. Sanz ◽  
L. I. Furlong

The biomedical literature represents a rich source of biomarker information. However, both the size of literature databases and their lack of standardization hamper the automatic exploitation of the information contained in these resources. Text mining approaches have proven to be useful for the exploitation of information contained in the scientific publications. Here, we show that a knowledge-driven text mining approach can exploit a large literature database to extract a dataset of biomarkers related to diseases covering all therapeutic areas. Our methodology takes advantage of the annotation of MEDLINE publications pertaining to biomarkers with MeSH terms, narrowing the search to specific publications and, therefore, minimizing the false positive ratio. It is based on a dictionary-based named entity recognition system and a relation extraction module. The application of this methodology resulted in the identification of 131,012 disease-biomarker associations between 2,803 genes and 2,751 diseases, and represents a valuable knowledge base for those interested in disease-related biomarkers. Additionally, we present a bibliometric analysis of the journals reporting biomarker related information during the last 40 years.


2021 ◽  
Author(s):  
Chengkun Wu ◽  
Xinyi Xiao ◽  
Canqun Yang ◽  
JinXiang Chen ◽  
Jiacai Yi ◽  
...  

Abstract Background: Interactions of microbes and diseases are of great importance for biomedical research. However, large-scale curated databases for microbe-disease interactions are missing, as the amount of related literature is enormous and the curation process is costly and time-consuming. In this paper, we aim to construct a large-scale database for microbe-disease interactions automatically. We attained this goal via applying text mining methods based on a deep learning model with a moderate curation cost. We also built a user-friendly web interface to allow researchers navigate and query desired information. Results: For curation, we manually constructed a golden-standard corpora (GSC) and a sliver-standard corpora (SSC) for microbe-disease interactions. Then we proposed a text mining framework for microbe-disease interaction extraction without having to build a model from scratch. Firstly, we applied named entity recognition (NER) tools to detect microbe and disease mentions from texts. Then we transferred a deep learning model BERE to recognize relations between entities, which was originally built for drug-target interactions or drug-drug interactions. The introduction of SSC for model ne-tuning greatly improves the performance of detection for microbe-disease interactions, with an average reduction in error of approximately 10%. The resulting MDIDB website offers data browsing, custom search for specific diseases or microbes as well as batch download. Conclusions: Evaluation results demonstrate that our method outperform the baseline model (rule-based PKDE4J) with an average F1-score of 73.81%. For further validation, we randomly sampled nearly 1,000 predicted interactions by our model, and manually checked the correctness of each interaction, which gives a 73% accuracy. The MDIDB webiste is freely avaliable throuth http://dbmdi.com/index/


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Nícia Rosário-Ferreira ◽  
Victor Guimarães ◽  
Vítor S. Costa ◽  
Irina S. Moreira

Abstract Background Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus.


2019 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Runyu Fan ◽  
Lizhe Wang ◽  
Jining Yan ◽  
Weijing Song ◽  
Yingqian Zhu ◽  
...  

Constructing a knowledge graph of geological hazards literature can facilitate the reuse of geological hazards literature and provide a reference for geological hazard governance. Named entity recognition (NER), as a core technology for constructing a geological hazard knowledge graph, has to face the challenges that named entities in geological hazard literature are diverse in form, ambiguous in semantics, and uncertain in context. This can introduce difficulties in designing practical features during the NER classification. To address the above problem, this paper proposes a deep learning-based NER model; namely, the deep, multi-branch BiGRU-CRF model, which combines a multi-branch bidirectional gated recurrent unit (BiGRU) layer and a conditional random field (CRF) model. In an end-to-end and supervised process, the proposed model automatically learns and transforms features by a multi-branch bidirectional GRU layer and enhances the output with a CRF layer. Besides the deep, multi-branch BiGRU-CRF model, we also proposed a pattern-based corpus construction method to construct the corpus needed for the deep, multi-branch BiGRU-CRF model. Experimental results indicated the proposed deep, multi-branch BiGRU-CRF model outperformed state-of-the-art models. The proposed deep, multi-branch BiGRU-CRF model constructed a large-scale geological hazard literature knowledge graph containing 34,457 entities nodes and 84,561 relations.


2019 ◽  
Vol 9 (18) ◽  
pp. 3658 ◽  
Author(s):  
Jianliang Yang ◽  
Yuenan Liu ◽  
Minghui Qian ◽  
Chenghua Guan ◽  
Xiangfei Yuan

Clinical named entity recognition is an essential task for humans to analyze large-scale electronic medical records efficiently. Traditional rule-based solutions need considerable human effort to build rules and dictionaries; machine learning-based solutions need laborious feature engineering. For the moment, deep learning solutions like Long Short-term Memory with Conditional Random Field (LSTM–CRF) achieved considerable performance in many datasets. In this paper, we developed a multitask attention-based bidirectional LSTM–CRF (Att-biLSTM–CRF) model with pretrained Embeddings from Language Models (ELMo) in order to achieve better performance. In the multitask system, an additional task named entity discovery was designed to enhance the model’s perception of unknown entities. Experiments were conducted on the 2010 Informatics for Integrating Biology & the Bedside/Veterans Affairs (I2B2/VA) dataset. Experimental results show that our model outperforms the state-of-the-art solution both on the single model and ensemble model. Our work proposes an approach to improve the recall in the clinical named entity recognition task based on the multitask mechanism.


Sign in / Sign up

Export Citation Format

Share Document