scholarly journals Numerical Research on Convective Heat Transfer and Resistance Characteristics of Turbulent Duct Flow Containing Nanorod-Based Nanofluids

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Fangyang Yuan ◽  
Jianzhong Lin ◽  
Jianfeng Yu

A coupled numerical model for nanorod-based suspension flow is constructed, and the convective heat transfer and resistance characteristics of the nanofluid duct flow are investigated. The numerical results are verified by experimental results and theoretical models. Most of nanorods are located randomly in the bulk fluid, while particles near the wall aligned with the flow direction. Friction factor of nanofluids with nanorods increases with higher particle volume concentration or aspect ratio, but the increment reduces when the Reynolds number gets larger. The relative Nusselt number is obtained to characterize the intensity of convective heat transfer. The results show that the Nusselt number of nanofluids increases when the particle volume concentration or aspect ratio becomes larger. Compared to increasing the aspect ratio of nanorods, increasing the particle volume concentration would be more effective on enhancing the convective heat transfer intensity in industrial applications although it will cause a slight increase of resistance.

2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Pamela Vocale ◽  
Gian Luca Morini ◽  
Marco Spiga

In this work, hydrodynamically and thermally fully developed gas flow through elliptical microchannels is numerically investigated. The Navier–Stokes and energy equations are solved by considering the first-order slip flow boundary conditions and by assuming that the wall heat flux is uniform in the axial direction, and the wall temperature is uniform in the peripheral direction (i.e., H1 boundary conditions). To take into account the microfabrication of the elliptical microchannels, different heated perimeter lengths are analyzed along the microchannel wetted perimeter. The influence of the cross section geometry on the convective heat transfer coefficient is also investigated by considering the most common values of the elliptic aspect ratio, from a practical point of view. The numerical results put in evidence that the Nusselt number is a decreasing function of the Knudsen number for all the considered configurations. On the contrary, the role of the cross section geometry in the convective heat transfer depends on the thermal boundary condition and on the rarefaction degree. With the aim to provide a useful tool for the designer, a correlation that allows evaluating the Nusselt number for any value of aspect ratio and for different working gases is proposed.


2014 ◽  
Vol 1016 ◽  
pp. 738-742
Author(s):  
Nur Irmawati Om ◽  
H.A. Mohammed

Predictions are reported for three-dimensional laminar mixed convective heat transfer using nanofluids in a horizontal rectangular duct. Five different types of nanoparticle, Ag, Al2O3, Au, Cu and SiO2 with nanoparticles volume fractions range of 2% to 10% are investigated. In this study, the effects of nanofluids type, nanoparticles volume fraction of nanofluids and the effect of aspect ratio on the thermal fields were examined. Results reveal that the addition of nanoparticles to the base fluid and their volume fraction tend to increase the Nusselt number along the horizontal rectangular duct (i.e., increases the rate of heat transfer). It was also found that the Nusselt number increases as the aspect ratio decreases.


2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
M.M. Yassin ◽  
M.N. Musa

A numerical simulation was accomplished in this study that investigated the turbulent force convective heat transfer and pressure drop in straight circular copper pipe with a hydraulic diameter of 0.0005m and 0.1m in length, as given by Lee and Mudawar [11]. The enhancement of heat transfer for water and nanofluids (Fe3O4) under 100 [W/m2] constant heat flux was applied around the wall of the pipe. In this study, standard k-ɛ turbulence model was employed and was performed at a steady state flow, incompressible turbulent flow, and three-dimensional structure. Various volume concentrations of nanoparticles were conducted in the range of 1% to 15% at constant nanoparticle diameter size, which was 32 nm. The heat transfer enhancement was obtained in the range of Reynolds number from 3000 to 10,000. The results displayed an increase in Reynolds number and volume concentrations, as well as an increase in the Nusselt number. The optimum Nusselt number gained was about 5% to 6% of volume concentration at each Reynolds number tested. Besides, with the increase of Reynolds number, the variation pressure saw a dropped for inlet, whereas an increase in the outlet section. Moreover, the  increase in volume concentration also caused a small increment in the pressure drop compared to pure water.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Michael J. Bluck

A detailed understanding of the flow of a liquid metal in a rectangular duct subject to a strong transverse magnetic field is vital in a number of engineering applications, notably for proposed blanket technologies for fusion reactors. Fusion reactors offer the potential for clean base-load energy and their development is now entering an engineering phase where the practical means by which the energy released can be converted into useful heat must be addressed. To such ends, this article considers the convective heat transfer processes for fully developed laminar magnetohydrodynamic (MHD) flows in rectangular ducts of the kind proposed in some blanket designs. Analytical solutions which incorporate the nonuniformity of peripheral temperature and heat flux and the effect of volumetric heating, are developed as functions of magnetic field strength and duct aspect ratio. A distinct feature of these MHD problems, not yet addressed in the literature, is that unlike the conventional characterization of heat transfer by a Nusselt number, it is necessary to generalize the concept to vectors and matrices of Nusselt coefficients, due to the extreme anisotropy of both the flow and heating. The new analytical results presented here capture more complex heat transfer behavior than non-MHD flows and in particular characterize the importance of aspect ratio. The importance of these new results lie not only in the improved understanding of this complex process but also in the provision of characterizations of convective heat transfer which underpin progress toward systems scale simulations of fusion blanket technology which will be vital for the realization of practical fusion reactors.


2021 ◽  
Author(s):  
AmirAbbas Sartipi

Domed skylights are important architectural design elements to deliver daylight and solar heat into buildings and connect buildings' occupants to outdoors. To increase the energy efficiency of skylighted buildings, domed skylights employ a number of glazing layers forming enclosed spaces. The latter are subject to complex buoyancy-induced convection heat transfer. Currently, existing fenestration design computer tools and building energy simulation programs do not, however, cover such skylights to quantify their energy performance when installed in buildings. his work presents a numerical study on natural laminar convection within concentric and vertically eccentric domed cavities. The edges of domed cavities are assumed adiabatic and the temperature of the interior and exterior surfaces are uniform and constant. The concentric and vertically eccentric domed cavities were studied when heated from inside and heated from outside, respectively. A commercial CFD package employing the control volume approach is used to solve the laminar convective heat transfer within the cavity. The obtained results showed steady flow for small Grashof numbers. For moderate and large Grashof numbers, depending on the gap ratio and the cases of heating from inside or outside, the flow may be steady or transient periodic with a single vortex-cell or multi vortex-cells. The Nusselt number for the case of heated from inside is greater than the case of heated from outside. The numerical results show that the changes in the gap ratio have smaller effect on Nusselt number in high profile domed skylights than lower profile domed skylights.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anuj Kumar Shukla ◽  
Anupam Dewan

Purpose Convective heat transfer features of a turbulent slot jet impingement are comprehensively studied using two different computational approaches, namely, URANS (unsteady Reynolds-averaged Navier–Stokes equations) and SAS (scale-adaptive simulation). Turbulent slot jet impingement heat transfer is used where a considerable heat transfer enhancement is required, and computationally, it is a quite challenging flow configuration. Design/methodology/approach Customized OpenFOAM 4.1, an open-access computational fluid dynamics (CFD) code, is used for SAS (SST-SAS k-ω) and URANS (standard k-ε and SST k-ω) computations. A low-Re version of the standard k-ε model is used, and other models are formulated for good wall-refined calculations. Three turbulence models are formulated in OpenFOAM 4.1 with second-order accurate discretization schemes. Findings It is observed that the profiles of the streamwise turbulence are under-predicted at all the streamwise locations by SST k-ω and SST SAS k-ω models, but follow similar trends as in the reported results. The standard k-ε model shows improvements in the predictions of the streamwise turbulence and mean streamwise velocity profiles in the zone of outer wall jet. Computed profiles of Nusselt number by SST k-ω and SST-SAS k-ω models are nearly identical and match well with the reported experimental results. However, the standard k-ε model does not provide a reasonable profile or quantification of the local Nusselt number. Originality/value Hybrid turbulence model is suitable for efficient CFD computations for the complex flow problems. This paper deals with a detailed comparison of the SAS model with URANS and LES for the first time in the literature. A thorough assessment of the computations is performed against the results reported using experimental and large eddy simulations techniques followed by a detailed discussion on flow physics. The present results are beneficial for scientists working with hybrid turbulence models and in industries working with high-efficiency cooling/heating system computations.


1999 ◽  
Vol 121 (5) ◽  
pp. 514-520 ◽  
Author(s):  
R. B. Roemer

Previous models of countercurrent blood vessel heat transfer have used one of two, different, equally valid but previously unreconciled formulations, based either on: (1) the difference between the arterial and venous vessels’ average wall temperatures, or (2) the difference between those vessels’ blood bulk fluid temperatures. This paper shows that these two formulations are only equivalent when the four, previously undefined, “convective heat transfer coefficients” that are used in the bulk temperature difference formulation (two coefficients each for the artery and vein) have very specific, problem-dependent relationships to the standard convective heat transfer coefficients. (The average wall temperature formulation uses those standard coefficients correctly.) The correct values of these bulk temperature difference formulation “convective heat transfer coefficients” are shown to be either: (1) specific functions of (a) the tissue conduction resistances, (b) the standard convective heat transfer coefficients, and (c) the independently specified bulk arterial, bulk venous and tissue temperatures, or (2) arbitrary, user defined values. Thus, they are generally not equivalent to the standard convective heat transfer coefficients that are regularly used, and must change values depending on the blood and tissue temperatures. This dependence can significantly limit the convenience and usefulness of the bulk temperature difference formulations.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Zhi-Min Lin ◽  
Liang-Bi Wang

The secondary flow has been used frequently to enhance the convective heat transfer, and at the same flow condition, the intensity of convective heat transfer closely depends on the thermal boundary conditions. Thus far, there is less reported information about the sensitivity of heat transfer enhancement to thermal boundary conditions by using secondary flow. To account for this sensitivity, the laminar convective heat transfer in a circular tube fitted with twisted tape was investigated numerically. The effects of conduction in the tape on the Nusselt number, the relationship between the absolute vorticity flux and the Nusselt number, the sensitivity of heat transfer enhancement to the thermal boundary conditions by using secondary flow, and the effects of secondary flow on the flow boundary layer were discussed. The results reveal that (1) for fully developed laminar heat convective transfer, different tube wall thermal boundaries lead to different effects of conduction in the tape on heat transfer characteristics; (2) the Nusselt number is closely dependent on the absolute vorticity flux; (3) the efficiency of heat transfer enhancement is dependent on both the tube wall thermal boundaries and the intensity of secondary flow, and the ratio of Nusselt number with twisted tape to its counterpart with straight tape decreases with increasing twist ratio while it increases with increasing Reynolds number for both uniform wall temperature (UWT) and uniform heat flux (UHF) conditions; (4) the difference in the ratio between UWT and UHF conditions is also strongly dependent on the conduction in the tape and the intensity of the secondary flow; and (5) the twist ratio ranging from 4.0 to 6.0 does not necessarily change the main flow velocity boundary layer near tube wall, while Reynolds number has effects on the shape of the main flow velocity boundary layer near tube wall only in small regions.


Sign in / Sign up

Export Citation Format

Share Document