scholarly journals Maneuvering Acceleration Estimation Algorithm Using Doppler Radar Measurement

2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Hongqiang Liu ◽  
Zhongliang Zhou ◽  
Lei Yu

An algorithm to estimate the tangential and normal accelerations directly using the Doppler radar measurement in an online closed loop form is proposed. Specific works are as follows: first, the tangential acceleration and normal acceleration are taken as the state variables to establish a linear state transition equation; secondly, the decorrelation unbiased conversion measurement Kalman filter (DUCMKF) algorithm is proposed to deal with the strongly nonlinear measurement equation; thirdly, the geometric relationship between the range rate and the velocity direction angle is used to obtain two estimators of the velocity direction angle; finally, the interactive multiple model (IMM) algorithm is used to fuse the estimators of the velocity direction angle and then the adaptive IMM of current statistical model based DUCMKF (AIMM-CS-DUCMKF) is proposed. The simulation experiment results show that the accuracy and stability of DUCMKF are better than the sequential extended Kalman filter algorithm, the sequential unscented Kalman filter algorithm, and converted measurement Kalman filter algorithms; on the other hand they show that the AIMM-CS-DUCMKF can obtain the high accuracy of the tangential and normal accelerations estimation algorithm.

2013 ◽  
Vol 66 (6) ◽  
pp. 859-877 ◽  
Author(s):  
M. Malleswaran ◽  
V. Vaidehi ◽  
S. Irwin ◽  
B. Robin

This paper aims to introduce a novel approach named IMM-UKF-TFS (Interacting Multiple Model-Unscented Kalman Filter-Two Filter Smoother) to attain positional accuracy in the intelligent navigation of a manoeuvring vehicle. Here, the navigation filter is designed with an Unscented Kalman Filter (UKF), together with an Interacting Multiple Model algorithm (IMM), which estimates the state variables and handles the noise uncertainty of the manoeuvring vehicle. A model-based estimator named Two Filter Smoothing (TFS) is implemented along with the UKF-based IMM to improve positional accuracy. The performance of the proposed IMM-UKF-TFS method is verified by modelling the vehicle motion into Constant Velocity-Coordinated Turn (CV-CT), Constant Velocity – Constant Acceleration (CV-CA) and Constant Acceleration-Coordinated Turn (CA-CT) models. The simulation results proved that the proposed IMM-UKF-TFS gives better positional accuracy than the existing conventional estimators such as UKF and IMM-UKF.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhiwen Hou ◽  
Fanliang Bu

Purpose The purpose of this study is to establish an effective tracking algorithm for small unmanned aerial vehicles (UAVs) based on interacting multiple model (IMM) to take timely countermeasures against illegal flying UAVs. Design/methodology/approach In this paper, based on the constant velocity model (CV), the maneuvering adaptive current statistical model (CS) and the angular velocity adaptive three-dimensional (3D) fixed center constant speed rate constant steering rate model, a small UAV tracking algorithm based on adaptive interacting multiple model (AIMM-UKF) is proposed. In addition, an adaptive robust filter is added to each model of the algorithm. The linear Kalman filter algorithm is attached to the CV model and the CS model and the unscented Kalman filter algorithm (UKF) is attached to the CSCDR model to solve the nonlinearity of the 3D turning model. Findings Monte-Carlo simulation comparison with the other two IMM tracking algorithms shows that in the case of different movement modes and maneuvering strength of the UAV, the AIMM-UKF algorithm makes a good trade-off between the amount of calculation and filtering accuracy, which can maintain more accurate and stable tracking and has strong robustness. At the same time, after testing the actual observation data of the UAV, the results show that the AIMM-UKF algorithm state estimation trajectory can be regarded as an actual trajectory in practical engineering applications, which has good practical value. Originality/value This paper presents a new small UAV tracking algorithm based on IMM and the advantages and practicability of this algorithm compared with existing algorithms are proved through experiments.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8159
Author(s):  
Dominik Sierociuk ◽  
Michal Macias

In this paper, a method for states, parameters, and fractional order estimation is presented. The proposed method is an extension of the traditional dual estimation method and uses three blocks of filters with appropriate data interconnections. As the main part of the estimation algorithm, the Fractional Unscented Kalman Filter was used. The proposed Triple Estimation algorithm might be treated as a convenient tool for estimation and analysis of a wide range of dynamical systems with fractional constants or variable order nature, especially when knowledge about the identified system is very restricted and both order and system parameters are unknown. In order to show the performance of the proposed algorithm, sets of numerical results are presented.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 607
Author(s):  
Jihan Li ◽  
Xiaoli Li ◽  
Kang Wang ◽  
Guimei Cui

The PM2.5 concentration model is the key to predict PM2.5 concentration. During the prediction of atmospheric PM2.5 concentration based on prediction model, the prediction model of PM2.5 concentration cannot be usually accurately described. For the PM2.5 concentration model in the same period, the dynamic characteristics of the model will change under the influence of many factors. Similarly, for different time periods, the corresponding models of PM2.5 concentration may be different, and the single model cannot play the corresponding ability to predict PM2.5 concentration. The single model leads to the decline of prediction accuracy. To improve the accuracy of PM2.5 concentration prediction in this solution, a multiple model adaptive unscented Kalman filter (MMAUKF) method is proposed in this paper. Firstly, the PM2.5 concentration data in three time periods of the day are taken as the research object, the nonlinear state space model frame of a support vector regression (SVR) method is established. Secondly, the frame of the SVR model in three time periods is combined with an adaptive unscented Kalman filter (AUKF) to predict PM2.5 concentration in the next hour, respectively. Then, the predicted value of three time periods is fused into the final predicted PM2.5 concentration by Bayesian weighting method. Finally, the proposed method is compared with the single support vector regression-adaptive unscented Kalman filter (SVR-AUKF), autoregressive model-Kalman (AR-Kalman), autoregressive model (AR) and back propagation neural network (BP). The prediction results show that the accuracy of PM2.5 concentration prediction is improved in whole time period.


Author(s):  
Yi Pan ◽  
Hui Ye ◽  
Keke He

A modified interacting multiple model (IMM) method called spherical simplex unscented Kalman filter-based jumping and static IMM (SSUKF-JSIMM) is proposed to solve the problem of nonlinear filtering with unknown continuous system parameter. SSUKF-JSIMM regards the continuous system parameter space as a union of disjoint regions, and each region is assigned to a model. For each model, under the assumption that the parameter belongs to the corresponding region, one sub-filter is used to estimate the parameter and the state when the parameter is presumed to be jumping, and another sub-filter is used to estimate the parameter and the state when the parameter is presumed to be static. Considering that spherical simplex unscented Kalman filter (SSUKF) is more suitable for a real-time system than the unscented Kalman filter (UKF), SSUKFs are adopted as the sub-filters of SSUKF-JSIMM. Results of the two SSUKFs are fused as the estimation output of the model. Experimental results show that SSUKF-JSIMM achieves higher performance than IMM, SIR, and UKF in bearings-only tracking problem.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3941
Author(s):  
Yan Wang ◽  
Wenjia Ren ◽  
Long Cheng ◽  
Jijun Zou

As the progress of electronics and information processing technology continues, indoor localization has become a research hotspot in wireless sensor networks (WSN). The adverse non-line of sight (NLOS) propagation usually causes large measurement errors in complex indoor environments. It could decrease the localization accuracy seriously. A traditional grey model considers the motion characteristics but does not take the NLOS propagation into account. A robust interacting multiple model (R-IMM) could effectively mitigate NLOS errors but the clipping point is hard to choose. In order to easily cope with NLOS errors, we present a novel filter framework: mixture Gaussian fitting-based grey Kalman filter structure (MGF-GKFS). Firstly, grey Kalman filter (GKF) is proposed to pre-process the measured distance, which can mitigate the process noise and alleviate NLOS errors. Secondly, we calculate the residual which is the difference between the filtered distance of GKF and the measured distance. Thirdly, a soft decision method based on mixture Gaussian fitting (MGF) is proposed to identify the propagation condition through residual value and give the degree of membership. Fourthly, weak NLOS noise is further processed by unscented Kalman filter (UKF). The filtered results of GKF and UKF are weighted using the degree of membership. Finally, a maximum likelihood (ML) algorithm is applied to get the coordinate of the target. MGF-GKFS is not supported by any of the priori knowledge. Full-scale simulations and an experiment are conducted to compare the localization accuracy and robustness with the state-of-the-art algorithms, including robust interacting multiple model (R-IMM), unscented Kalman filter (UKF) and interacting multiple model (IMM). The results show that MGF-GKFS could achieve significant improvement compared to R-IMM, UKF and IMM algorithms.


Sign in / Sign up

Export Citation Format

Share Document