scholarly journals Triple Estimation of Fractional Variable Order, Parameters, and State Variables Based on the Unscented Fractional Order Kalman Filter

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8159
Author(s):  
Dominik Sierociuk ◽  
Michal Macias

In this paper, a method for states, parameters, and fractional order estimation is presented. The proposed method is an extension of the traditional dual estimation method and uses three blocks of filters with appropriate data interconnections. As the main part of the estimation algorithm, the Fractional Unscented Kalman Filter was used. The proposed Triple Estimation algorithm might be treated as a convenient tool for estimation and analysis of a wide range of dynamical systems with fractional constants or variable order nature, especially when knowledge about the identified system is very restricted and both order and system parameters are unknown. In order to show the performance of the proposed algorithm, sets of numerical results are presented.

Author(s):  
Weijie Liu ◽  
Hongliang Zhou ◽  
Zeqiang Tang ◽  
Tianxiang Wang

Abstract Accurate estimation of battery state of charge (SOC) is the basis of battery management system. the fractional order theory is introduced into the second-order resistance-capacitance (RC)model of lithium battery and adaptive genetic algorithm is used to identify the parameters of the second-order RC model based on fractional order. Considering the changes of internal resistance and battery aging during battery discharge, the battery health state (SOH) is estimated based on unscented Kalman filter (UKF), and the values of internal resistance and maximum capacity of the battery are obtained. Finally, a novel estimation algorithm of lithium battery SOC based on SOH and fractional order adaptive extended Kalman filter (FOAEKF) is proposed. In order to verify the effectiveness of the proposed algorithm, an experimental system is set up and the proposed method is compared with the existing SOC estimation algorithms. The experimental results show that the proposed method has higher estimation accuracy, with the average error lower than 1% and the maximum error lower than 2%.


Author(s):  
Michailas Romanovas ◽  
Lasse Klingbeil ◽  
Martin Traechtler ◽  
Yiannos Manoli

The article presents an approach for combining methods of recursive Bayesian estimation with models of dynamical systems with varying differentiation order. The work addresses the problem of explicit fractional order estimation and tracking by constructing an efficient Unscented Kalman filter, where the model order is directly estimated within an augmented state along with the variables of interest. The feasibility of the estimation method is assessed using a benchmark problem based on a simplified fractional neuron firing rate model and time-dependent differentiation order. The proposed technique is compared to an implicit method based on Interacting Multiple Model filtering and a computationally efficient method using a modification of the Ensemble Kalman filter. The performance with respect to different parameters and filter settings is analyzed and a corresponding discussion is provided.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Hongqiang Liu ◽  
Zhongliang Zhou ◽  
Lei Yu

An algorithm to estimate the tangential and normal accelerations directly using the Doppler radar measurement in an online closed loop form is proposed. Specific works are as follows: first, the tangential acceleration and normal acceleration are taken as the state variables to establish a linear state transition equation; secondly, the decorrelation unbiased conversion measurement Kalman filter (DUCMKF) algorithm is proposed to deal with the strongly nonlinear measurement equation; thirdly, the geometric relationship between the range rate and the velocity direction angle is used to obtain two estimators of the velocity direction angle; finally, the interactive multiple model (IMM) algorithm is used to fuse the estimators of the velocity direction angle and then the adaptive IMM of current statistical model based DUCMKF (AIMM-CS-DUCMKF) is proposed. The simulation experiment results show that the accuracy and stability of DUCMKF are better than the sequential extended Kalman filter algorithm, the sequential unscented Kalman filter algorithm, and converted measurement Kalman filter algorithms; on the other hand they show that the AIMM-CS-DUCMKF can obtain the high accuracy of the tangential and normal accelerations estimation algorithm.


Author(s):  
Xiongbin Peng ◽  
Yuwu Li ◽  
Wei Yang ◽  
Akhil Garg

Abstract In the battery thermal management system (BMS), the state of charge (SOC) is a very influential factor, which can prevent overcharge and over-discharge of the lithium-ion battery (LIB). This paper proposed a battery modeling and online battery parameter identification method based on the Thevenin equivalent circuit model (ECM) and recursive least squares (RLS) algorithm. The proposed model proved to have high accuracy. The error between the ECM terminal voltage value and the actual value basically fluctuates between ±0.1V. The extended Kalman filter (EKF) algorithm and the unscented Kalman filter (UKF) algorithm were applied to estimate the SOC of the battery based on the proposed model. The SOC experimental results obtained under dynamic stress test (DST), federal urban driving schedule (FUDS), and US06 cycle conditions were analyzed. The maximum deviation of the SOC based on EKF was 1.4112%~2.5988%, and the maximum deviation of the SOC based on UKF was 0.3172%~0.3388%. The SOC estimation method based on UKF and RLS provides a smaller deviation and better adaptability in different working conditions, which makes it more implementable in a real-world automobile application.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257849
Author(s):  
Muhammad Wasim ◽  
Ahsan Ali ◽  
Mohammad Ahmad Choudhry ◽  
Faisal Saleem ◽  
Inam Ul Hasan Shaikh ◽  
...  

An airship is lighter than an air vehicle with enormous potential in applications such as communication, aerial inspection, border surveillance, and precision agriculture. An airship model is made up of dynamic, aerodynamic, aerostatic, and propulsive forces. However, the computation of aerodynamic forces remained a challenge. In addition to aerodynamic model deficiencies, airship mass matrix suffers from parameter variations. Moreover, due to the lighter-than-air nature, it is also susceptible to wind disturbances. These modeling issues are the key challenges in developing an efficient autonomous flight controller for an airship. This article proposes a unified estimation method for airship states, model uncertainties, and wind disturbance estimation using Unscented Kalman Filter (UKF). The proposed method is based on a lumped model uncertainty vector that unifies model uncertainties and wind disturbances in a single vector. The airship model is extended by incorporating six auxiliary state variables into the lumped model uncertainty vector. The performance of the proposed methodology is evaluated using a nonlinear simulation model of a custom-developed UETT airship and is validated by conducting a kind of error analysis. For comparative studies, EKF estimator is also developed. The results show the performance superiority of the proposed estimator over EKF; however, the proposed estimator is a bit expensive on computational grounds. However, as per the requirements of the current application, the proposed estimator can be a preferred choice.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mingrui Luo ◽  
En Li ◽  
Rui Guo ◽  
Jiaxin Liu ◽  
Zize Liang

Redundant manipulators are suitable for working in narrow and complex environments due to their flexibility. However, a large number of joints and long slender links make it hard to obtain the accurate end-effector pose of the redundant manipulator directly through the encoders. In this paper, a pose estimation method is proposed with the fusion of vision sensors, inertial sensors, and encoders. Firstly, according to the complementary characteristics of each measurement unit in the sensors, the original data is corrected and enhanced. Furthermore, an improved Kalman filter (KF) algorithm is adopted for data fusion by establishing the nonlinear motion prediction of the end-effector and the synchronization update model of the multirate sensors. Finally, the radial basis function (RBF) neural network is used to adaptively adjust the fusion parameters. It is verified in experiments that the proposed method achieves better performances on estimation error and update frequency than the original extended Kalman filter (EKF) and unscented Kalman filter (UKF) algorithm, especially in complex environments.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ho-Nien Shou

This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF) method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF). As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 214
Author(s):  
Yanbo Wang ◽  
Fasheng Wang ◽  
Jianjun He ◽  
Fuming Sun

The particle filter method is a basic tool for inference on nonlinear partially observed Markov process models. Recently, it has been applied to solve constrained nonlinear filtering problems. Incorporating constraints could improve the state estimation performance compared to unconstrained state estimation. This paper introduces an iterative truncated unscented particle filter, which provides a state estimation method with inequality constraints. In this method, the proposal distribution is generated by an iterative unscented Kalman filter that is supplemented with a designed truncation method to satisfy the constraints. The detailed iterative unscented Kalman filter and truncation method is provided and incorporated into the particle filter framework. Experimental results show that the proposed algorithm is superior to other similar algorithms.


2013 ◽  
Vol 66 (6) ◽  
pp. 859-877 ◽  
Author(s):  
M. Malleswaran ◽  
V. Vaidehi ◽  
S. Irwin ◽  
B. Robin

This paper aims to introduce a novel approach named IMM-UKF-TFS (Interacting Multiple Model-Unscented Kalman Filter-Two Filter Smoother) to attain positional accuracy in the intelligent navigation of a manoeuvring vehicle. Here, the navigation filter is designed with an Unscented Kalman Filter (UKF), together with an Interacting Multiple Model algorithm (IMM), which estimates the state variables and handles the noise uncertainty of the manoeuvring vehicle. A model-based estimator named Two Filter Smoothing (TFS) is implemented along with the UKF-based IMM to improve positional accuracy. The performance of the proposed IMM-UKF-TFS method is verified by modelling the vehicle motion into Constant Velocity-Coordinated Turn (CV-CT), Constant Velocity – Constant Acceleration (CV-CA) and Constant Acceleration-Coordinated Turn (CA-CT) models. The simulation results proved that the proposed IMM-UKF-TFS gives better positional accuracy than the existing conventional estimators such as UKF and IMM-UKF.


Sign in / Sign up

Export Citation Format

Share Document