scholarly journals A Comparative Analysis of Information Hiding Techniques for Copyright Protection of Text Documents

2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Milad Taleby Ahvanooey ◽  
Qianmu Li ◽  
Hiuk Jae Shim ◽  
Yanyan Huang

With the ceaseless usage of web and other online services, it has turned out that copying, sharing, and transmitting digital media over the Internet are amazingly simple. Since the text is one of the main available data sources and most widely used digital media on the Internet, the significant part of websites, books, articles, daily papers, and so on is just the plain text. Therefore, copyrights protection of plain texts is still a remaining issue that must be improved in order to provide proof of ownership and obtain the desired accuracy. During the last decade, digital watermarking and steganography techniques have been used as alternatives to prevent tampering, distortion, and media forgery and also to protect both copyright and authentication. This paper presents a comparative analysis of information hiding techniques, especially on those ones which are focused on modifying the structure and content of digital texts. Herein, various text watermarking and text steganography techniques characteristics are highlighted along with their applications. In addition, various types of attacks are described and their effects are analyzed in order to highlight the advantages and weaknesses of current techniques. Finally, some guidelines and directions are suggested for future works.

Author(s):  
Khoerul Umam

The spread of digital media on the internet was very broad, fast, and cannot be monitored in a structured manner about what media has been uploaded and distributed on the internet network. The spread of digital media like this was very difficult to detect whether the media that shared was privately owned or that of others that is re-shared by media theft or digital media piracy. One step to overcome the theft of digital works is to give them a watermark, which is an identity that is placed on top of the work. However, this is still considered unsafe because the identity attached can be cut and manipulated again until it is not visible. In addition, the use of Steganography method to hide messages in an image can still be manipulated by adding messages continuously so that it accumulates and damages the original owner of the image. In this article, the author provides a solution called Digital Watermarking, a step of encrypting the data of the original owner of the work and putting it into the image of his work. This watermark cannot be seen clearly, but actually in the media there is encrypted data with a strong Advanced Encryption Standard (AES) method. As a result, a tool that can improve the security of media owner data by combining the AES and Steganogaphy methods in the formation of new media that cannot be changed anymore. So, when the media is stolen and used by others and has been edited, the owner's personal data can never be changed.


Author(s):  
Fayez M. Idris

Digital watermarking is a process in which a secondary pattern or signature, called a watermark, is hidden into a digital media (e.g., image and video) such that it can be detected or extracted later for different intentions. Digital watermarking has many applications including copyright protection, authentication, tamper detection, and embedding of electronic patient records in medical images. Various software implementations of digital watermarking algorithms can be built. While software implementations can address digital watermarking in off-line applications, they cannot meet the requirements of many applications. For example, in consumer electronic devices, a software solution would be very expensive. This has motivated the development of hardware implementations of digital watermarking. In this chapter, the authors present a detailed survey of existing hardware implementations of image and video watermarking algorithms. Fundamental design issues are discussed and special techniques exploited to enhance efficiency are identified. Future outlooks are also presented to address the challenges of hardware architecture design for image and video watermarking.


Author(s):  
Brij B. Gupta ◽  
Somya Rajan Sahoo ◽  
Prashant Chugh ◽  
Vijay Iota ◽  
Anupam Shukla

In global internet usage, increasing multimedia message, which includes video, audio, images, and text documents, on the web raised a lot of consequences related to copyright. For copyright protection, authentication purpose and forgery detection digital watermarking is the robust way in social network content protection. In this technique, the privacy information is embedded inside the multimedia content like image and video. The protected content embedded inside multimedia content is called watermark-enabled information. To make more effective the process of watermarking, the content encrypted before embedding to the image. Basically, the digital watermarking embedded process implemented in two different domains called spatial and frequency domain. In spatial domain digital watermarking, the watermark information is embedded in the least significant bit of the original image on the basis of bit plane selected and on the basis of the pixels of image, embedding, and detection is performed.


Author(s):  
Hsien-Chu Wu ◽  
Hei-Chuan Lin

In recent years, services on the Internet have greatly improved and are more reliable than before. However, the easy downloads and duplications on the Internet have created a rush of illicit reproductions. Undoubtedly, the rights of ownership are violated and vulnerable to the predators that stalk the Internet. Therefore, protection against these illegal acts has become a mind-boggling issue. Previously, artists and publishers painstakingly signed or marked their products to prevent illegal use. However with the invention of digital products, protecting rightful ownership has become difficult. Currently, there are two schemes to protect data on the Internet. The first scheme is the traditional cryptography where the important data or secret is to be encrypted by a special process before being transmitted on the Internet. This scheme requires much computational process and time to encrypt or decrypt. On the other hand, the second scheme is steganography where the important message or secret is hidden in the digital media. The hidden data is not perceptible by the human visual system (HVS). The digital watermarking technique is an application of steganography (Chang, Huang, & Chen, 2000; Chen, Chang, & Huang 2001). In order to safeguard copyrights and rightful ownerships, a representative logo or watermark could be hidden in the image or media that is to be protected. The hidden data can be recovered and used as proof of rightful ownership. The watermarking schemes can be grouped into three kinds, largely, dependent on its application. They use the fragile watermark, semi-fragile watermark, and robust watermark, respectively (Fabien, Ross, & Markus, 1999). Fragile watermarks are easily corrupted when the watermarked image is compressed or tampered with. Semi-fragile watermarks can sustain attacks from normal image processing, but are not robust against malicious tampering. Fragile and semi-fragile watermarks are restricted in its use for image authentication and integrity attestation (Fridrich,2002; Fridrich, Memon, & Goljan, 2000). For the robust watermarking, it is always applied in ownership verification and copyright protection (Fridrich, Baldoza, & Simard, 1998; Huang, Wang, & Pan, 2002; Lu, Xu, & Sun, 2005; Solanki, Jacobsoen, Madhow, Manjunath, & Chandrasekaran, 2004). Some basic conditions must be followed: (1) Invisibility: the watermarked image must look similar to its original and any difference invisible to the human visual system. (2) Undetectable: the watermark embedded in the image must not be easily detectable by computing processes or statistical methods. (3) Safety: watermark is encrypted and if accessed by a hacker; cannot be removed or tampered with. (4) Robustness: the watermark is able to withstand normal and/or illegal manipulations, such as compression, blurring, sharpening, cropping, rotations and more. The retrieved watermark is perceptible even after these processes. (5) Independence: the watermark can be retrieved without the original image. Last but not the least, (6) Efficiency: the watermarked image should not require large storage and must also allow for a comparable-sized watermark to be hidden in the media. The proposed method is a VQ-based watermark technique that depends on the structure of a tree growth for grouping the codebook. The scheme is robust. That is, the watermark is irremovable and also can withstand normal compression process, tampering by compression or other malicious attacks. After these attacks, the watermark must be recovered with comparable perceptibility and useful in providing proof of rightful ownerships.


Author(s):  
Kuanchin Chen

Sharing, disseminating, and presenting data in digital format is not just a fad, but it is becoming part of our life. Without careful planning, digitized resources could easily be misused, especially those that are shared across the Internet. Examples of such misuse include use without the owner’s permission, and modification of a digitized resource to fake ownership. One way to prevent such behaviors is to employ some form of copyright protection technique, such as digital watermarks. Digital watermarks refer to the data embedded into a digital source (e.g., images, text, audio, or video recording). They are similar to watermarks in printed materials as a message inserted into the host media typically becomes an integral part of the media. Apart from traditional watermarks in printed forms, digital watermarks may also be invisible, may be in the forms other than graphics, and may be digitally removed.


Author(s):  
Farook Sattar ◽  
Dan Yu

Today, the Internet is a worldwide broadcasting capability, a mechanism for information dissemination and a medium for collaboration and interaction between individuals and their computers without regard for geographic location. With the rapid evolution of digital networks, digital libraries and World Wide Web (WWW) services, the convenient broadcasting or exposition of digital products on the global network leads easily to illegal copying, modifying and retransmission. The Internet has spawned many copyright issues involving multimedia content distribution. Let’s say an owner would like to sell or distribute a work to legal/registered users only. If the work were subsequently copied/redistributed illegally, how could the owner find who was responsible? Cryptographic techniques provide an effective solution for securing the delivery process and controlling the use of the contents that an user has obtained. However, with flawless transmission through the network, the contents after decryption are exactly the same as the original data. The contents can be copied perfectly infinite times. A user can also manipulate the contents. Digital watermarking (Arnold, Schmucker, & Wolthusen, 2003; Katzenbeisser & Petitcolas, 2000) offers a way to counter copyright piracy on global networks that are not solvable by cryptography. It provides proof and tracking capabilities to illegal copying and distribution of multimedia information. Most existing digital watermarking schemes are based on some assumptions for watermark detection and extraction. Some schemes require the previous knowledge of watermark locations, strengths or some thresholds. In some algorithms, the watermark is estimated with the help of the original watermark information. To ensure the robustness and invisibility of the watermark, the optimum embedding locations are usually different for different images. For a large image database, it could be a disadvantage to require watermark location and strength information for watermark detection and extraction. A large amount of information then needs to be stored. On the Internet, an owner would like to distribute multimedia data by signing different watermarks to different users in order to prevent illegal redistribution of the data by a legal user. In this scenario, watermark detection and extraction algorithms requiring information of either watermark embedding locations and strengths or the original watermark should fail, since one does not know exactly which watermark is embedded in a particular copy of the watermarked image. To this end, we present a new blind watermarking scheme (Yu, Sattar, & Ma, 2002; Yu & Sattar, 2003, 2005) based on Independent Component Analysis (ICA) (Hyvarinen, 1999; Hyvärinen & Oja, 1999; Lee, 1998) for color images, which can overcome existing problems of watermark detection and extraction as described above. The new ICA-based scheme is found to be efficient in the application of data tracking/tracing for multimedia distribution through the Internet against other digital watermarking schemes. By adopting this ICA-based watermarking scheme, an efficient multimedia distribution framework/protocol for copyright protection can be accomplished. This article is organized as follows: The watermark embedding and extraction algorithms for color image watermarking using the new ICA-based scheme are presented next, followed by a discussion and comments on the results, security issues, summary and future works.


Author(s):  
Kuanchin Chen

Digital representation of data is becoming popular as technology improves our ways of information dissemination, sharing and presentation. Without careful planning, digitized resources could easily be misused, especially those distributed broadly over the Internet. Examples of such misuse include use without owner’s permission and modification of a digitized resource to fake ownership. One way to prevent such behaviors is to employ some form of authentication mechanism, such as digital watermarks.


Author(s):  
Ayan Chatterjee ◽  
Mahendra Rong

The communication through wireless medium is very popular to the developed society. More specifically, the use of the internet as well as the use of social networking sites is increasing. Therefore, information security is an important factor during wireless communication. Three major components of it are confidentiality, integrity, and availability of information among authorized users. Integrity level is maintained through various digital authentication schemes. Fuzzy logic is an important soft computing tool that increases the digital watermarking system in various ways. In this chapter, different popular and high secured watermarking schemes using fuzzy logic are analyzed with their mathematical and experimental efficiency. A comparative analysis is developed here with corresponding different parameters.


2013 ◽  
pp. 148-176
Author(s):  
Fayez M. Idris

Digital watermarking is a process in which a secondary pattern or signature, called a watermark, is hidden into a digital media (e.g., image and video) such that it can be detected or extracted later for different intentions. Digital watermarking has many applications including copyright protection, authentication, tamper detection, and embedding of electronic patient records in medical images. Various software implementations of digital watermarking algorithms can be built. While software implementations can address digital watermarking in off-line applications, they cannot meet the requirements of many applications. For example, in consumer electronic devices, a software solution would be very expensive. This has motivated the development of hardware implementations of digital watermarking. In this chapter, the authors present a detailed survey of existing hardware implementations of image and video watermarking algorithms. Fundamental design issues are discussed and special techniques exploited to enhance efficiency are identified. Future outlooks are also presented to address the challenges of hardware architecture design for image and video watermarking.


2013 ◽  
Vol 310 ◽  
pp. 650-655
Author(s):  
Yun Fei Jiang ◽  
Yong Gang Fu

Copyright protection has drawn much attentions especially in the advent of computer and the internet. Illagal copying of digital multimedia has been much easier because of widely using of the modern technologies.This paper proposes a novel digital watermarking algorithm based on the numbers of the blocked middle DCT positive and negative coefficients. Embedding watermark into the middle frequency of DCT is a perfect idea and it can receive a trade-off between robustness and imperceptibility.We utilized the embedding strength to get a balance between their robustness and imperceptibility. The results show that the algorithm is robust to print and scan process.


Sign in / Sign up

Export Citation Format

Share Document