scholarly journals Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Palika Chopra ◽  
Rajendra Kumar Sharma ◽  
Maneek Kumar ◽  
Tanuj Chopra

A comparative analysis for the prediction of compressive strength of concrete at the ages of 28, 56, and 91 days has been carried out using machine learning techniques via “R” software environment. R is digging out a strong foothold in the statistical realm and is becoming an indispensable tool for researchers. The dataset has been generated under controlled laboratory conditions. Using R miner, the most widely used data mining techniques decision tree (DT) model, random forest (RF) model, and neural network (NN) model have been used and compared with the help of coefficient of determination (R2) and root-mean-square error (RMSE), and it is inferred that the NN model predicts with high accuracy for compressive strength of concrete.

2020 ◽  
Vol 10 (5) ◽  
pp. 1691 ◽  
Author(s):  
Deliang Sun ◽  
Mahshid Lonbani ◽  
Behnam Askarian ◽  
Danial Jahed Armaghani ◽  
Reza Tarinejad ◽  
...  

Despite the vast usage of machine learning techniques to solve engineering problems, a very limited number of studies on the rock brittleness index (BI) have used these techniques to analyze issues in this field. The present study developed five well-known machine learning techniques and compared their performance to predict the brittleness index of the rock samples. The comparison of the models’ performance was conducted through a ranking system. These techniques included Chi-square automatic interaction detector (CHAID), random forest (RF), support vector machine (SVM), K-nearest neighbors (KNN), and artificial neural network (ANN). This study used a dataset from a water transfer tunneling project in Malaysia. Results of simple rock index tests i.e., Schmidt hammer, p-wave velocity, point load, and density were considered as model inputs. The results of this study indicated that while the RF model had the best performance for training (ranking = 25), the ANN outperformed other models for testing (ranking = 22). However, the KNN model achieved the highest cumulative ranking, which was 37. The KNN model showed desirable stability for both training and testing. However, the results of validation stage indicated that RF model with coefficient of determination (R2) of 0.971 provides higher performance capacity for prediction of the rock BI compared to KNN model with R2 of 0.807 and ANN model with R2 of 0.860. The results of this study suggest a practical use of the machine learning models in solving problems related to rock mechanics specially rock brittleness index.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1256 ◽  
Author(s):  
Patryk Ziolkowski ◽  
Maciej Niedostatkiewicz

Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class. Predictable compressive strength of concrete is essential for concrete structure utilisation and is the main feature of its safety and durability. Recently, machine learning is gaining significant attention and future predictions for this technology are even more promising. Data mining on large sets of data attracts attention since machine learning algorithms have achieved a level in which they can recognise patterns which are difficult to recognise by human cognitive skills. In our paper, we would like to utilise state-of-the-art achievements in machine learning techniques for concrete mix design. In our research, we prepared an extensive database of concrete recipes with the according destructive laboratory tests, which we used to feed the selected optimal architecture of an artificial neural network. We have translated the architecture of the artificial neural network into a mathematical equation that can be used in practical applications.


2017 ◽  
Vol 11 ◽  
pp. 117793221668754 ◽  
Author(s):  
Gerard G Dumancas ◽  
Indra Adrianto ◽  
Ghalib Bello ◽  
Mikhail Dozmorov

This supplement is intended to focus on the use of machine learning techniques to generate meaningful information on biological data. This supplement under Bioinformatics and Biology Insights aims to provide scientists and researchers working in this rapid and evolving field with online, open-access articles authored by leading international experts in this field. Advances in the field of biology have generated massive opportunities to allow the implementation of modern computational and statistical techniques. Machine learning methods in particular, a subfield of computer science, have evolved as an indispensable tool applied to a wide spectrum of bioinformatics applications. Thus, it is broadly used to investigate the underlying mechanisms leading to a specific disease, as well as the biomarker discovery process. With a growth in this specific area of science comes the need to access up-to-date, high-quality scholarly articles that will leverage the knowledge of scientists and researchers in the various applications of machine learning techniques in mining biological data.


2021 ◽  
Vol 28 (4) ◽  
pp. 1-32
Author(s):  
Anam Ahmad Khan ◽  
Joshua Newn ◽  
Ryan M. Kelly ◽  
Namrata Srivastava ◽  
James Bailey ◽  
...  

Annotation is an effective reading strategy people often undertake while interacting with digital text. It involves highlighting pieces of text and making notes about them. Annotating while reading in a desktop environment is considered trivial but, in a mobile setting where people read while hand-holding devices, the task of highlighting and typing notes on a mobile display is challenging. In this article, we introduce GAVIN, a gaze-assisted voice note-taking application, which enables readers to seamlessly take voice notes on digital documents by implicitly anchoring them to text passages. We first conducted a contextual enquiry focusing on participants’ note-taking practices on digital documents. Using these findings, we propose a method which leverages eye-tracking and machine learning techniques to annotate voice notes with reference text passages. To evaluate our approach, we recruited 32 participants performing voice note-taking. Following, we trained a classifier on the data collected to predict text passage where participants made voice notes. Lastly, we employed the classifier to built GAVIN and conducted a user study to demonstrate the feasibility of the system. This research demonstrates the feasibility of using gaze as a resource for implicit anchoring of voice notes, enabling the design of systems that allow users to record voice notes with minimal effort and high accuracy.


Big Data ◽  
2016 ◽  
pp. 676-689 ◽  
Author(s):  
Muhammad Taimoor Khan ◽  
Shehzad Khalid

Sentiment analysis for health care deals with the diagnosis of health care related problems identified by the patients themselves. It takes the patients opinions into perspective to make policies and modifications that could directly address their problems. Sentiment analysis is used with commercial products to great effect and has outgrown to other application areas. Aspect based analysis of health care, not only recommend the services and treatments but also present their strong features for which they are preferred. Machine learning techniques are used to analyze millions of review documents and conclude them towards an efficient and accurate decision. The supervised techniques have high accuracy but are not extendable to unknown domains while unsupervised techniques have low accuracy. More work is targeted to improve the accuracy of the unsupervised techniques as they are more practical in this time of information flooding.


Sign in / Sign up

Export Citation Format

Share Document