scholarly journals Damage Degree Detection of Cracks in a Locomotive Gear Transmission System

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
XinChang Liu ◽  
Qi Sun ◽  
ChunJun Chen

The gear transmission system is a vital component of the locomotive bogie. During locomotive operation, the damage to the gear transmission system spreads rapidly and affects the locomotive’s operational safety. In this paper, a method is proposed to detect the degree of tooth root crack damage. First, a dynamic locomotive model with a gear transmission is built, and the vertical acceleration of the locomotive subsystem (car body, bogie frame, wheelset, and motor) vibrations is obtained under various degrees of tooth root crack damage on the gear transmission system. By comparing the characteristics of those signals, the subsystem that is more sensitive to the effect of the tooth root crack is found. The characteristic parameters of the sensitive subsystem are calculated, and a multidimensional characteristic parameter matrix is established. The multidimensional characteristic parameter matrix is optimized and reduced by principal component analysis (PCA). Using the Grey relational analysis method, the degree of tooth root crack damage is detected. The proposed method demonstrates the ability to recognize the degree of tooth root crack damage.

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


2011 ◽  
Vol 65 ◽  
pp. 177-181
Author(s):  
Jia Hong Zheng ◽  
Min Li

The inherent characteristics of the wind generators growth gearbox were solved, then the reasons which caused the gear transmission system generating dynamic incentive was analyzed, and also internal incentive and external incentive were given to 2MW wind generators gear transmission system quantitatively. On the basis of these, 2MW wind generators growth gearbox system’s vibration response caused under internal incentive and external incentive was solved and analyzed.


Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Lixin Guo

AbstractIn order to study the different backlash, gear damping ratio and random disturbance on dynamic behavior of gear transmission system, stochastic dynamic equations of the three-degree-of-freedom spur gear transmission system are established considering random disturbances of a low-frequency external excitation induced by torque fluctuation, gear damping ratio, gear backlash, excitation frequency and meshing stiffness. Using bifurcation diagram, phase diagram, time course diagram, Poincaré map and power spectrum of the system, the dynamic characteristics of the gear transmission system with different backlash under gear damping ratio changing, and the influence of the random disturbance of gear damping ratio on the bifurcation characteristic of system are analyzed. Numerical simulation shows that the gear transmission system will be from periodic motion with a noisy disturbance to chaotic-like motion by period-doubling bifurcation with decreasing gear damping ratio. In the small damping ratio range, the backlash has great effect on the motion characteristics. Random disturbance has an important effect on the bifurcation characteristics.


Sign in / Sign up

Export Citation Format

Share Document