scholarly journals Study on Reasonable Energy Supplement Time of Tight Sandstone Oil Reservoirs with Rock Compressibility Stress Sensitivity

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Tian Xiaofeng ◽  
Tan Xianhong ◽  
Tian Ji ◽  
Li Nan ◽  
Yuan Zhongchao ◽  
...  

A-HBR field is a tight sandstone oil reservoir with a threshold pressure gradient and a rock compressibility stress sensitivity. However, no existing approach could predict reasonable energy supplement time considering both of them. Therefore, in this paper, rock compressibility stress sensitivity experiments are conducted. Then, a new approach is presented. This approach considers the correlation of rock compressibility and formation pressure. And the formation pressure is different from the development time and distance to oil well. The study suggests that the energy supplement time is later when the original rock compressibility is larger. The energy supplement time is earlier when the rock compressibility is more severe. A-HBR field’s reasonable energy supplement time is 83 days when considering the effect of rock compressibility stress sensitivity. It is much earlier than that when not considering the effect of rock compressibility stress sensitivity.

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Mingda Dong ◽  
Xuedong Shi ◽  
Jie bai ◽  
Zhilong Yang ◽  
Zhilin Qi

Abstract Stress sensitivity phenomenon is an important property in low-permeability and tight reservoirs and has a large impact on the productivity of production wells, which is defined as the effect of effective stress on the reservoir parameters such as permeability, threshold pressure gradient, and rock compressibility change accordingly. Most of the previous works are focused on the effect of effective stress on permeability and threshold pressure gradient, while rock compressibility is critical of stress sensitivity but rarely noticed. A series of rock compressibility measurement experiments have been conducted, and the quantitative relationship between effective stress and rock compressibility is accurately described in this paper. In the experiment, the defects in previous experiments were eliminated by using a new-type core holder. The results show that as the effective stress increases, the rock compressibility becomes lower. Then, a stress sensitivity model that considers the effect of effective stress on rock compressibility is established due to the experimental results. The well performance of a vertical well estimated by this model shows when considering the effect of effective stress on the rock compressibility, the production rate and recovery factor are larger than those without considering it. Moreover, the effect of porosity and confining pressure on the productivity of a vertical well is also studied and discussed in this paper. The results show that the productivity of a vertical well decreases with the increase in overburden pressure, and increases with the increase in the porosity.


2016 ◽  
Vol 35 (1) ◽  
pp. 33-53 ◽  
Author(s):  
Dan Wu ◽  
Binshan Ju ◽  
Shiqiang Wu ◽  
Eric Thompson Brantson ◽  
Yingkun Fu ◽  
...  

The inter-salt argillaceous dolomite reservoirs in the central region of China contain large abundance of oil resources with ultra-low permeability and porosity. However, the oil wells in this area show a very quick reduction with the decline of formation pressure. This article aims to investigate the main possible reasons that affect oil well productivity in the target oilfield. This study begins with analysis of capillary microscopic model, core stress sensitivity experiments, and non-Darcy percolation experiments. The impact of effective stress on permeability and porosity of the reservoir was revealed in this article. The novel productivity model and productivity evaluation model which couples stress sensitivity and threshold pressure gradient were proposed. The analysis of capillary microscopic model shows stress sensitivity of permeability to be much greater than that of porosity during the process of depressurization. The core stress sensitivity experiments results indicate that permeability and effective stress show index relationship while porosity and effective stress show binomial relationship. Damage rate and recovery rate of permeability and porosity were put forward to describe the degree of influence of stress sensitivity on permeability and porosity. The models were used to investigate the factors that affect single well productivity for the target oilfield. Application of the proposed model to this tight oilfield indicates that, the degree of influence of stress sensitivity is much greater than that of threshold pressure gradient. In addition, the greater the stress sensitivity coefficient and threshold pressure gradient are, the greater the productivity reduction will be.


2014 ◽  
Vol 893 ◽  
pp. 712-715 ◽  
Author(s):  
Yong Gao Xu ◽  
Xian Wen Li ◽  
Rui Quan Liao ◽  
Dong Jin Xu

Hydraulic fracturing is an effective technique for increasing the productivity of wells producing from low permeability and tight oil formations (Reservoir permeability is less than 0.1mD). By establishing the seepage model of vertically fractured well, concerned on the threshold pressure gradient and stress sensitivity of the reservoir, the mathematical model has been solved and the productivity equation of vertically fractured well has been obtained in the paper. The productivity analysis shows that the bigger the threshold pressure gradient, the lower the productivity of oil well; the stronger the stress sensitivity, the lower the productivity, besides, the initial productivity of oil well increases with the increasing length of the fracture, but the increase rate tends small.


2011 ◽  
Vol 361-363 ◽  
pp. 520-525
Author(s):  
Jun Feng Yang ◽  
Han Qiao Jiang ◽  
Han Dong Rui ◽  
Xiao Qing Xie

Physical simulation experiments were made to research on the stress sensitivity on physical property of low permeability reservoir rocks. The experimental results shown that effective pressure had good exponential relationship with reservoir permeability. Combining with materaial balance method, reservoir engineering and rational deducation was made to reserach on water-flooding timing of low permeability reservoir development. Several production targets were obtained by these method, such as formation pressure, water and oil production, water cut and so on. The results shown that advanced water-flooding was very important in low permeability reservoir development to reduce the bad impact of stress sensitivity on formation permeability and maintain formation pressure.


2021 ◽  
Author(s):  
Jiaying Li ◽  
Chunyan Qi ◽  
Ye Gu ◽  
Yu Ye ◽  
Jie Zhao

Abstract The characteristics of seepage capability and rock strain during reservoir depletion are important for reservoir recovery, which would significantly influence production strategy optimization. The Cretaceous deep natural gas reservoirs in Keshen Gasfield in Tarim Basin are mainly buried over 5000 m, featuring with ultra-low permeability, developed natural fractures and complex in-situ stress states. However, there is no comprehensive study on the variation of mechanical properties and seepage capability of this gas reservoir under in-situ stress conditions and most studies on stress-sensitivity are conducted under conventional triaxial or uniaxial stress conditions, which cannot truly represent in-situ stress environment. In this work, Cretaceous tight sandstone in Keshen Gasfield was tested under true-triaxial stresses conditions by an advanced geophysical imaging true-triaxial testing system to study the stress-sensitivity and anisotropy of rock stress-strain behavior, porosity and permeability. Four groups of sandstone samples are prepared as the size of 80mm×80mm×80mm, three of which are artificially fractured with different angle (0°,15°,30°) to simulate hydraulic fracturing. The test results corresponding to different samples are compared to further reveal the influence of the fracture angle on rock mechanical properties and seepage capability. The samples are in elastic strain during reservoir depletion, showing an apparent correlation with fracture angles. The porosity decreases linearly with stress loading, where the decrease rate of effective porosity of fracture samples is significantly higher than that of intact samples. The permeabilities decrease exponentially and show significant anisotropy in different principal stress directions, especially in σH direction. The mechanical properties and seepage capability of deep tight sandstone are successfully tested under true-triaxial stresses conditions in this work, which reveals the stress-sensitivity of anisotropic permeability, porosity and stress-strain behavior during gas production. The testing results proposed in this paper provides an innovative method to analyse rock mechanical and petrophysical properties and has profound significance on exploration and development of tight gas reservoir.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongchao Xue ◽  
Qingshuang Jin ◽  
Hua Tian

Finding ways to accelerate the effective development of tight sandstone gas reservoirs holds great strategic importance in regard to the improvement of consumption pattern of world energy. The pores and throats of the tight sandstone gas reservoir are small with abundant interstitial materials. Moreover, the mechanism of gas flow is highly complex. This paper is based on the research of a typical tight sandstone gas reservoir in Changqing Oilfield. A strong stress sensitivity in tight sandstone gas reservoir is indicated by the results, and it would be strengthened with the water production; at the same time, a rise to start-up pressure gradient would be given by the water producing process. With the increase in driving pressure gradient, the relative permeability of water also increases gradually, while that of gas decreases instead. Following these results, a model of gas-water two-phase flow has been built, keeping stress sensitivity, start-up pressure gradient, and the change of relative permeability in consideration. It is illustrated by the results of calculations that there is a reduction in the duration of plateau production period and the gas recovery factor during this period if the stress sensitivity and start-up pressure gradient are considered. In contrast to the start-up pressure gradient, stress sensitivity holds a greater influence on gas well productivity.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongwei Wu ◽  
Chuanzhi Cui ◽  
Japan Trivedi ◽  
Ning Ai ◽  
Wenhao Tang

In general, there is stress sensitivity damage in tight reservoirs and fractures. Furthermore, the flow in tight reservoirs is the low-velocity non-Darcy flow. Currently, few researches of pressure analysis for volume fracturing vertical well are conducted simultaneously considering the low-velocity non-Darcy flow and stress sensitivity. In the paper, a novel flow model of a volume fractured vertical well is proposed and solved numerically. Firstly, the threshold pressure gradient, permeability modulus, and experimental data are, respectively, utilized to characterize the low-velocity non-Darcy flow, matrix stress sensitivity, and fracture stress sensitivity. Then, a two-region composite reservoir is established to simulate the vertical well with volume fracturing. After that, the logarithm meshing method is used to discrete the composite reservoir, and the flow model is solved by the method of finite difference and IMPES. Finally, the model verification is conducted, and the effects of the low-velocity non-Darcy flow and stress sensitivity on the pressure and pressure derivative are analyzed. The six flow regimes are identified by the dimensionless pressure and pressure derivative curve. They are, respectively, the fracture linear flow regime, early transition flow regime, radial flow regime, crossflow regime, advanced transition flow regime, and boundary controlling flow regime. The stress sensitivity and threshold pressure gradient have a great effect on the dimensionless pressure and pressure derivative. With the increase of reservoir stress sensitivity, the pressure and pressure derivative are upward at the advanced transition flow and boundary controlling regimes. However, the pressure and pressure derivative are downward at the advanced transition flow and boundary controlling regimes when the fracture sensitivity increases. An increase in the threshold pressure gradient results in a high dimensionless pressure and pressure derivative. This work reveals the effects of low-velocity non-Darcy flow and stress sensitivity on pressure and provides a more accurate reference for reservoir engineers in pressure analysis when developing a tight reservoir by using the volume fracturing vertical well.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jianchun Xu ◽  
Ruizhong Jiang ◽  
Wenchao Teng

Threshold pressure gradient (TPG) and stress sensitivity which cause the nonlinear flow in low permeability reservoirs were carried out by experiments. Firstly, the investigation of existing conditions of TPG for oil flow in irreducible water saturation low-permeability reservoirs was conducted and discussed, using the cores from a real offshore oilfield in China. The existence of TPG was proven. The relationship between TPG and absolute permeability was obtained by laboratory tests. TPG increases with decreasing absolute permeability. Then, stress sensitivity experiment was carried out through depressurizing experiment and step-up pressure experiment. Permeability modulus which characterizes stress sensitivity increases with decreasing absolute permeability. Consequently, a horizontal well pressure transient analysis mathematical model considering threshold pressure gradient and stress sensitivity was established on the basis of mass and momentum conservation equations. The finite element method (FEM) was presented to solve the model. Influencing factors, such as TPG, permeability modulus, skin factor, wellbore storage, horizontal length, horizontal position, and boundary effect on pressure and pressure derivative curves, were also discussed. Results analysis demonstrates that the pressure transient curves are different from Darcy’s model when considering the nonlinear flow characteristics. Both TPG and permeability modulus lead to more energy consumption and the reservoir pressure decreases more than Darcy’s model.


Sign in / Sign up

Export Citation Format

Share Document