scholarly journals Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Askar ◽  
Narissara Nuthammachot ◽  
Worradorn Phairuang ◽  
Pramaditya Wicaksono ◽  
Tri Sayektiningsih

Private forests have a crucial role in maintaining the functioning of the Indonesian forest ecosystem especially because of the continuous degradation of natural forests. Private forests are a part of social forestry which becomes a tool for the Indonesian government to reduce carbon dioxide (CO2) emission by 26% by 2030. The United Nations Programme on Reducing Emissions from Deforestation and Forest Degradation has encouraged the Indonesian government to establish a forest monitoring system by estimating forest carbon stock using a combination of forest inventory and remote sensing. This study is aimed at assessing the potential of vegetation indices derived from Sentinel-2 for estimating aboveground biomass (AGB) of private forests. We used 45 sample plots and 7 vegetation indices to evaluate the ability of Sentinel-2 in estimating AGB on private forests. Normalised difference index (NDI) 45 exhibited a strong correlation with AGB compared to other indices (r = 0.89; R2 = 0.79). Stepwise linear regression fitted for establishing the model between field AGB and vegetation indices (R2 = 0.81). We also found that AGB in the study area based on spatial analysis was 72.54 Mg/ha. A root mean square error (RMSE) value from predicted and observed AGB was 27 Mg/ha. The AGB value in the study area is higher than the AGB value from some of forest types, and it indicates that private forests are good for biomass storage. Overall, vegetation indices from Sentinel-2 multispectral imagery can provide a good result in terms of reporting the AGB on private forests.

Author(s):  
S. Lechler ◽  
M. C. A. Picoli ◽  
A. R. Soares ◽  
A. Sanchez ◽  
M. E. D. Chaves ◽  
...  

Abstract. Deforestation is a threat to biodiversity and the world’s climate. As agriculture and mining areas grow, forest loss becomes unbearable for the environment. Consequently, monitoring deforestation is crucial for decision makers to create polices. The most reliable deforestation data about the Amazon forest is generated by the Brazil’s National Institute for Space Research (INPE) through its PRODES project. This effort is labor and time intensive because it depends on visual interpretation from experts. Additionally, frequent Amazon’s atmospheric phenomena, such as clouds, difficult image analysis which induces alternative approaches such as time series analysis. One way to increase the number of images of an area consists of using images from different satellites. NASA provides the Harmonized Landsat and Sentinel-2 (HLS) dataset solving spectral dissimilarities of satellite sensors. In this paper, the possibilities of HLS for forest monitoring are explored by applying two deforestation detection methods, Break Detection for Additive Season and Trend (BFAST) monitor and Random Forest, over four different vegetation indices, NDVI, EVI, GEMI and SAVI. The SAVI index used as input for BFAST monitor performed the best in this data setup with 95.23% for deforested pixel, 53.69% for non-deforested pixels. Although the HLS data is described as analysis ready, further pre-processing can enhance the outcome of the analysis. Especially, since the cloud and cirrus cover in the Amazon causes gaps in the dataset, a best pixel method is recommended to create patched images and thus a continuous time series as input for any land cover and land use classification.


2020 ◽  
Vol 12 (24) ◽  
pp. 4155
Author(s):  
Haiyang Pang ◽  
Aiwu Zhang ◽  
Xiaoyan Kang ◽  
Nianpeng He ◽  
Gang Dong

An accurate assessment of the grassland aboveground biomass (AGB) is important for analyzing terrestrial ecosystem structures and functions, estimating grassland primary productivity, and monitoring climate change and carbon/nitrogen circulation on a global scale. Multispectral satellites with wide-width advantages, such as Sentinel-2, have become the inevitable choice for the large-scale monitoring of grassland biomass on regional and global scales. However, the spectral resolution of multispectral satellites is generally low, which limits the inversion accuracy of grassland AGB and restricts further application in large-scale grassland monitoring. For this reason, a satellite-scale simulated spectra method was proposed to enhance the spectral information of the Sentinel-2 data, and a simulated spectrum (SS) was constructed using this algorithm. Then, the raw spectrum (RS) of Sentinel-2 and the SS were used as data sources to calculate the vegetation indices (RS-VIs and SS-VIs, which represent vegetation indices calculated using RS and SS data, respectively), and the multi-granularity spectral segmentation algorithm (MGSS) was employed to extract spectral segmentation features (RS-SF and SS-SF, which represent segmentation features extracted by RS and SS data, respectively). Following this, these spectral features (RS-SF, SS-SF, RS-VIs, and SS-VIs) were used to estimate AGB by partial least-squares regression (PLSR) and multiple stepwise regression (MSR) models. Finally, the spatial distribution law and the reasons for the latitude zone of the Inner Mongolia Plateau were analyzed, based on precipitation, the average temperature, topography, etc. The conclusions are as follows. Firstly, the SS has more spectral information and its sensitivity to biomass is higher than the RS of Sentinel-2 in some bands, and the correlation between the SS-VIs and biomass is higher than that of the RS-VIs. Secondly, among the spectral features, the most accurate AGB estimation was obtained by SS-SF, which gave R2 = 0.95. The root mean square error (RMSE) was 10.86 g/m2 and the estimate accuracy (EA) was 82.84% in the MSR model. Additionally, RMSE = 10.89 g/m2 and EA = 82.78% in the PLSR model. Compared with the traditional estimation methods using RS and VI, R2 was increased by at least 0.2, RMSE was reduced by at least 14.08 g/m2, and EA was increased by 22.26%. Therefore, the simulated spectra method can help improve the estimation accuracy of AGB, and a new idea about regional and global large-scale biomass acquisition is provided.


Author(s):  
A. Osio ◽  
M. T. Pham ◽  
S. Lefèvre

Abstract. Tree degradation in National Parks poses a serious risk to the birds and animals and to a larger extent the general ecosystem. The essence of Forest degradation mapping is to detect the extent of damage on the trees over time, hence providing stakeholders with a basis for forest rehabilitation and intervention. The study proposes a workflow for detection and classification of degrading acacia vegetation along Lake Nakuru riparian reserve. Inspired by previous research on the use of Dual Polarized Sentinel 1 Ground Range Detected (GRD) data for vegetation detection, a set of six Sentinel 1 GRD and Sentinel 2 MSI of corresponding dates (2018–2019) were used. Our study confirms the existing correlation between vegetation indices derived from optical sensors and the backscatter indices from S1 SAR image of the same land cover classes. Factors that were used in validating the results include some comparisons between pixelwise and object-based classification, with a focus on the underlying segmentation and classification algorithms, the polarimetric attributes (VV+VH intensity bands) and the reflectance bands (NIR, SWIR & GREEN), the Haralick features (GLCM) vs. some geometric attributes (area & moment of inertia). Classification carried out on the temporal datasets considering geometric attributes and the Random Forest classifier yielded the highest Overall Accuracy (OA) with 94.25 %, and a Kappa coefficient of 0.90.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Fardin Moradi ◽  
Ali Asghar Darvishsefat ◽  
Manizheh Rajab Pourrahmati ◽  
Azade Deljouei ◽  
Stelian Alexandru Borz

Due to the challenges brought by field measurements to estimate the aboveground biomass (AGB), such as the remote locations and difficulties in walking in these areas, more accurate and cost-effective methods are required, by the use of remote sensing. In this study, Sentinel-2 data were used for estimating the AGB in pure stands of Carpinus betulus (L., common hornbeam) located in the Hyrcanian forests, northern Iran. For this purpose, the diameter at breast height (DBH) of all trees thicker than 7.5 cm was measured in 55 square plots (45 × 45 m). In situ AGB was estimated using a local volume table and the specific density of wood. To estimate the AGB from remotely sensed data, parametric and nonparametric methods, including Multiple Regression (MR), Artificial Neural Network (ANN), k-Nearest Neighbor (kNN), and Random Forest (RF), were applied to a single image of the Sentinel-2, having as a reference the estimations produced by in situ measurements and their corresponding spectral values of the original spectral (B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12) and derived synthetic (IPVI, IRECI, GEMI, GNDVI, NDVI, DVI, PSSRA, and RVI) bands. Band 6 located in the red-edge region (0.740 nm) showed the highest correlation with AGB (r = −0.723). A comparison of the machine learning methods indicated that the ANN algorithm returned the best ABG-estimating performance (%RMSE = 19.9). This study demonstrates that simple vegetation indices extracted from Sentinel-2 multispectral imagery can provide good results in the AGB estimation of C. betulus trees of the Hyrcanian forests. The approach used in this study may be extended to similar areas located in temperate forests.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Negar Tavasoli ◽  
Hossein Arefi

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 data to predict AGB by using GA-RF model performed better than Sentinel-2 data.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


2021 ◽  
Vol 13 (8) ◽  
pp. 1595
Author(s):  
Chunhua Li ◽  
Lizhi Zhou ◽  
Wenbin Xu

Wetland vegetation aboveground biomass (AGB) directly indicates wetland ecosystem health and is critical for water purification, carbon cycle, and biodiversity conservation. Accurate AGB estimation is essential for the monitoring and supervision of ecosystems, especially in seasonal floodplain wetlands. This paper explored the capability of spectral and texture features from the Sentinel-2 Multispectral Instrument (MSI) for modeling grassland AGB using random forest (RF) and extreme gradient boosting (XGBoost) algorithms in Shengjin Lake wetland (a Ramsar site). We use five-fold cross-validation to verify the model effectiveness. The results indicated that the RF and XGBoost models had a robust and efficient performance (with root mean square error (RMSE) of 126.571 g·m−2 and R2 of 0.844 for RF, RMSE of 112.425 g·m−2 and R2 of 0.869 for XGBoost), and the XGBoost models, by contrast, performed better. Both traditional and red-edge vegetation indices (VIs) obtained satisfactory results of AGB estimation (RMSE = 127.936 g·m−2, RMSE = 125.879 g·m−2 in XGBoost models, respectively), with the red-edge VIs contributed more to the AGB models. Moreover, we selected eight gray-level co-occurrence matrix (GLCM) textures calculated by four processing window sizes using the mean value of four offsets, and further analyzed the results of three analysis sets. Textures derived from traditional and red-edge bands using a 7 × 7 window size performed better in biomass estimation. This finding suggested that textures derived from the traditional bands were as important as the red-edge bands. The introduction of textures moderately improved the accuracy of modeling AGB, whereas the use of textures alo ne was not satisfactory. This research demonstrated that using the Sentinel-2 MSI and the two ensemble algorithms is an effective method for long-term dynamic monitoring and assessment of grass AGB in seasonal floodplain wetlands, which can support sustainable management and carbon accounting of wetland ecosystems.


2021 ◽  
Vol 13 (14) ◽  
pp. 2755
Author(s):  
Peng Fang ◽  
Nana Yan ◽  
Panpan Wei ◽  
Yifan Zhao ◽  
Xiwang Zhang

The net primary productivity (NPP) and aboveground biomass mapping of crops based on remote sensing technology are not only conducive to understanding the growth and development of crops but can also be used to monitor timely agricultural information, thereby providing effective decision making for agricultural production management. To solve the saturation problem of the NDVI in the aboveground biomass mapping of crops, the original CASA model was improved using narrow-band red-edge information, which is sensitive to vegetation chlorophyll variation, and the fraction of photosynthetically active radiation (FPAR), NPP, and aboveground biomass of winter wheat and maize were mapped in the main growing seasons. Moreover, in this study, we deeply analyzed the seasonal change trends of crops’ biophysical parameters in terms of the NDVI, FPAR, actual light use efficiency (LUE), and their influence on aboveground biomass. Finally, to analyze the uncertainty of the aboveground biomass mapping of crops, we further discussed the inversion differences of FPAR with different vegetation indices. The results demonstrated that the inversion accuracies of the FPAR of the red-edge normalized vegetation index (NDVIred-edge) and red-edge simple ratio vegetation index (SRred-edge) were higher than those of the original CASA model. Compared with the reference data, the accuracy of aboveground biomass estimated by the improved CASA model was 0.73 and 0.70, respectively, which was 0.21 and 0.13 higher than that of the original CASA model. In addition, the analysis of the FPAR inversions of different vegetation indices showed that the inversion accuracies of the red-edge vegetation indices NDVIred-edge and SRred-edge were higher than those of the other vegetation indices, which confirmed that the vegetation indices involving red-edge information can more effectively retrieve FPAR and aboveground biomass of crops.


Sign in / Sign up

Export Citation Format

Share Document