scholarly journals Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

2019 ◽  
Vol 144 ◽  
pp. 106158 ◽  
Author(s):  
Ju-Jie Yan ◽  
Man-Tai Chen ◽  
Wai-Meng Quach ◽  
Ming Yan ◽  
Ben Young

1987 ◽  
Vol 19 (3) ◽  
pp. 360-364
Author(s):  
A. P. Vashchenko ◽  
A. S. Dukhovnyi ◽  
G. V. Stepanov ◽  
V. M. Tokarev ◽  
V. A. Chumachenko

2014 ◽  
Vol 584-586 ◽  
pp. 1794-1797
Author(s):  
Tie Jun Zhang

In order to produce required high strength steel bars for the building industry, it is necessary to provide steel with correct compositions. Effective, controlled micro-alloying is very important in the production of high strength steel bar of consistent microstructure and hence mechanical properties and weldability. Through adopting a series of measures such as molten iron pretreatment, converter final control, argon, calcium treatment, vanadium nitride and so on, a proper way to make high strength steel bar was given. The results show that the strength of the steel bars for the building industry can be increased by micro alloying with vanadium nitride. Favorable metallurgical achievements and economical benefits were gained.


1990 ◽  
Vol 213 ◽  
Author(s):  
D.F. Lahrman ◽  
R.D. Field ◽  
R. Darolia

ABSTRACTIn this study, the strain rate sensitivity of single crystal NiAl has been investigated by performing tensile tests as a function of temperature and two strain rates. Three crystallographic orientations, [100], [110], and [111] were studied. The tensile test results investigated include yield strength, work hardening rate and plastic strain to failure. The data are discussed in terms of deformation mechanisms in NiAl.


2021 ◽  
Vol 11 (4) ◽  
pp. 56-69
Author(s):  
Retno Anggraini ◽  
Tavio Tavio ◽  
Gusti Putu Raka ◽  
Agustiar Agustiar

High-strength steel bars have different characteristics from normal-strength steel bars. Thus, the use of high-strength steel bars still needs to be investigated further before it can be used confidently in concrete structures. In the design, a reinforced concrete beam should also have enough ductility besides its loading capacity. One of the indicators identifies that a structure has sufficient ductility is its ability to maintain the load steadily due to progressive deformation. This paper presents the test results of three reinforced concrete beams designed with concrete strength (fc) of 30 MPa. Two different yield strengths (fy) of longitudinal and transverse reinforcements were used, namely, 420 and 550 MPa. The cross-sectional dimensions of the beams were 200  300 mm with a total span of 2000 mm and a rigid stub at the midspan. The beams were simply supported by double rollers at their tops and bottoms. These special supports were located at both ends of the beams. The load applied at the midspan of the beam through the rigid stub with the displacement control. The loading pattern protocol by the drift was set from 0 to 5.5 percent. Based on the test results, it can be seen that the beams with high-strength steel bars could achieve a higher load capacity than the beams with normal-strength steel bars. On the other hand, the beams with high-strength steel bars produced lower deflection than the beams with normal-strength steel bars. Furthermore, it can be concluded that all the beams could withstand the minimum required of 3.5 percent. None of the beams indicated brittle failures. All of the beams could survived until the end of the cycles at a drift of 5.5 percent. This condition indicates that the reinforced concrete beams with higher-strength reinforcement (fy of 550 MPa) could also maintain their load capacities under large deformation beyond the first yielding of the longitudinal steel bars.


2020 ◽  
Vol 62 (6) ◽  
pp. 573-583
Author(s):  
Andreas Lutz ◽  
Lukas Huber ◽  
Claus Emmelmann

Abstract This paper investigates the mechanical properties of two selective lasermelted aluminum alloys (AlSi10Mg and AlSi3.5Mg2.5) under high strain-rate uniaxial loading. Accelerated tensile tests were performed under various strain-rate decades (.ε = 4.7 × 10-3 up to 250 s-1) to determine the load-speed-specific changes in the mechanical properties. As a result of the primary laser-based shaping process, the microstructure and characteristics change was entirely comparable to the conventional manufacturing of aluminum parts. Based on an ultrafine microstructure, parts achieve high strength along with a brittle fracture behavior. Modifications for applications requiring high ductility (e. g., the crashloaded structural parts of a car body) can be made through specific heat treatment strategies. The experimental results demonstrate that a significant increase in ductility (factors 4-5) with a concurrent decrease in strength can be obtained compared to the as-built state. In high-speed tests, the tensile strength of both alloys rose strain-rate dependently around 10 %, and the elongation at break increased relatively by ≈ 15 % for AlSi10Mg and ≈ 10 % for AlSi3.5Mg2.5.


2012 ◽  
Vol 27 (6) ◽  
pp. 1024-1028 ◽  
Author(s):  
Zhengtao Duan ◽  
Yanmei Li ◽  
Mingya Zhang ◽  
Minghan Shi ◽  
Fuxian Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document