scholarly journals Mechanical Analysis of the Circular Tunnel considering the Interaction between the Ground Response Curve and Support Response Curve

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Tianming Su ◽  
Hanyu Peng ◽  
Hongyan Liu

The viewpoint that the ground initial elastic displacement and the interaction between the ground response curve (GRC) and support response curve (SRC) in the surrounding rock should be considered at the same time in the mechanical analysis of the circular tunnel is proposed, and its solution method is also established. Meanwhile, in order to consider the effect of the intermediate principle stress, Drucker-Prager criterion is introduced to describe the yield property of the surrounding rock. The calculation example indicates that the final radial displacement of the tunnel circumference will increase when the ground initial elastic displacement in the surrounding rock is considered before the support structure is applied, which indicates that it is necessary to consider the ground initial elastic displacement in the surrounding rock before the support structure is applied. With increasing the support resistance force and the initial field stress, the plastic zone radius in the surrounding rock and the radial displacement of the tunnel circumference will decrease and increase, respectively, while with increasing the rock internal friction angle and cohesion, the plastic zone radius in the surrounding rock and the radial displacement of the tunnel circumference both decrease. Meanwhile, with the stress Lode parameter increasing from −1 to 1, the plastic zone radius in the surrounding rock and the radial displacement of the tunnel circumference both greatly decrease and then slightly increase. It indicates that the intermediate principle stress has some effect on the calculation results.

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ling Wang ◽  
Jin-feng Zou ◽  
Yu-ming Sheng

Considering the effect of seepage force, a dimensionless approach was introduced to improve the stress and strain increment approach on the stresses and radial displacement around a circular tunnel excavated in a strain-softening generalized Hoek–Brown or Mohr–Coulomb rock mass. The circular tunnel can be simplified as axisymmetric problem, and the plastic zone was divided into a finite number of concentric rings which satisfy the equilibrium and compatibility equations. Increments of stresses and strains for each ring were obtained by solving the equilibrium and compatibility equations. Then, the stresses and displacements in softening zone can be calculated. The correctness and reliability of the proposed approach were performed by the existing solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zongshan Zou ◽  
Jun Yang ◽  
Zhongming Wang ◽  
Hongyan Liu

For the deficiencies that the existing calculation theory for the Plastic Zone of Tunnel Surrounding Rock (PZTSR) does not consider the effect of the intermediate principal stress σ2 and interaction between the surrounding rock and support structure on the PZTSR under unequal stress, the Unified Strength Theory (UST) for the rock is adopted to replace the often used Mohr-Coulomb (M-C) strength criterion to consider the effect of σ2 on the PZTSR. Meanwhile, the interaction mechanism between the surrounding rock and support structure is also considered in the proposed model. Finally, the effect of the initial elastic displacement of the surrounding rock, stiffness of the support structure, and the coefficient b of the intermediate principal stress on the plastic zone is discussed. The results show that the PZTSR will increase nonlinearly with increasing the initial elastic displacement of the surrounding rock, and when it increases to a certain value, its increase extent will be much obvious. With increasing the stiffness of the support structure, the PZTSR will gradually decrease nonlinearly, but the decrease extent is not very much. With increasing b, the PZTSR will decrease; namely, σ2 can improve the stress condition of the surrounding rock and reduce the PZTSR.


2012 ◽  
Vol 238 ◽  
pp. 787-790
Author(s):  
Zhong Ming Su ◽  
Rui Liu

According to the elastic-plastic theory, the analytical formula of plastic zone radius is established for circular tunnel in its excavation and support, and the effect of anchor support is verified based on the radius of plastic zone from the perspective of measured axial force. The influences to plastic zone by the variations of mechanical parameters and resistance of support are quantitatively analyzed. The result is of great significance to the monitoring measurement and the dynamic design and construction of tunnel.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Qifeng Guo ◽  
Jiliang Pan ◽  
Xinghui Wu ◽  
Xun Xi ◽  
Meifeng Cai

According to the strain-softening characteristics of rock mass, an ideal elastic strain-softening model is developed, and the surrounding rock of tunnels is subdivided into the plastic broken zone, plastic strain-softening zone, and elastic zone. Based on the generalized spatially mobilized plane criterion, an elastic-plastic analytical solution of a circular tunnel is derived. The effects of intermediate principal stress, strain softening, and dilatancy are considered in the unified solution. The stress, displacement, and plastic zone radius of surrounding rock based on the SMP criterion are compared with those based on the Mohr–Coulomb criterion. Furthermore, the effects of parameters such as the softening modulus, dilatancy angle, and internal friction angle on the deformation and stress of tunnels are discussed. It has been found that the larger the dilatancy angle is, the larger the plastic zone displacement and the radius of the broken zone are. The larger the internal friction angle, the smaller the sizes of the plastic zone, the strain-softening zone, and the broken zone are. The deformation of surrounding rock in the broken zone is more sensitive to the internal friction angle than that in the strain-softening zone. The unified solution based on the SMP criterion provides a well understanding for the elastic-plastic state of tunnels, which can be the guidance for tunnel excavations and support designs.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xuyang Shi ◽  
Wei Zhou ◽  
Liang Chen ◽  
Qingxiang Cai ◽  
Ming Li ◽  
...  

The strength criterion is an extremely important basis for evaluating the stability of surrounding rock and optimizing the support pressure design. In this paper, nine different strength criteria are summarized and simplified based on the reasonable assumption. Then, a new unified criterion equation is established, which includes all strength theories proposed by this paper. Meanwhile, a new unified closed-form solution for circular opening based on the newly proposed unified criterion equation is deduced with the infinite and finite external boundary combining with the nonassociative flow rule under plane strain conditions. In the plastic zone, four different elastic strain assumptions are applied to solving the plastic zone deformation considering the effect of rock mass damage. The solution’s validity is also verified by comparison with the traditional solution. Finally, the influences of strength criteria, dilation coefficient, elastic strain form of plastic zone, and rock mass damage on the mechanical response of surrounding rock are discussed in detail. The research result shows that TR and VM criteria give the largest plastic zone radius, followed by IDP, MC, and MDP criteria, and seem to underestimate the self-strength of rock mass; The CDP criterion gives the smallest plastic zone radius and may overestimate the self-strength of rock mass; UST0.5, GSMP, GMC, and GLD criteria that reasonably consider the effect of internal principal stresses give an intermediate range and can be strongly recommended for evaluating the mechanics and deformation behavior of surrounding rock; as the dilation coefficient gradually increases, the dimensionless surface displacement presents the nonlinear increase characteristics; the deformation of plastic zone and the ground response curve, which are closely related to the strength criteria, are also greatly influenced by the elastic strain assumption in the plastic zone and rock mass damage degree. The assumption that the elastic strain satisfies Hook’s law (Case 3) may be more reasonable compared with the continuous elastic strain (Case 1) and thick-walled cylinders (Case 2) assumptions; in addition, the Young’s modulus power function damage model seems to give more reasonable solution for the deformation of plastic zone and is suggested to be a preferred method for solving plastic displacement. The research results can provide very important theoretical bases for evaluating the tunnel stability and support design reliability of different lithology rock masses in underground engineering.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yansheng Deng ◽  
Jianxiu Wang ◽  
Baoping Zou

Modified Lade criterion can not only describe the strength properties of many kinds of rocks well but also has simple and practical parameters. Although the elastoplastic solution of circular tunnel has been extensively investigated, the method based on modified Lade criterion considering the effect of the intermediate principal stress, strain-softening behavior, and dilatancy has not yet been studied. In this paper, a new numerical procedure based on modified Lade criterion is proposed to calculate the elastoplastic solutions for surrounding rock of the circular tunnel. The comparisons of stress, displacement, and plastic zone radius are carried out between the presented method and published literatures under axisymmetric and nonaxisymmetric original in situ stress field. Finally, a series of parametric analyses are executed and discussed. It can be concluded that the lateral pressure coefficient, λ, influences both the size of plastic zone and the development direction. The plastic zone radius shows a negative power function change with increasing critical deviatoric plastic strain and increases slightly with increasing dilation angle, ψ.


Sign in / Sign up

Export Citation Format

Share Document