scholarly journals An Improved Stress and Strain Increment Approaches for Circular Tunnel in Strain-Softening Surrounding Rock Considering Seepage Force

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ling Wang ◽  
Jin-feng Zou ◽  
Yu-ming Sheng

Considering the effect of seepage force, a dimensionless approach was introduced to improve the stress and strain increment approach on the stresses and radial displacement around a circular tunnel excavated in a strain-softening generalized Hoek–Brown or Mohr–Coulomb rock mass. The circular tunnel can be simplified as axisymmetric problem, and the plastic zone was divided into a finite number of concentric rings which satisfy the equilibrium and compatibility equations. Increments of stresses and strains for each ring were obtained by solving the equilibrium and compatibility equations. Then, the stresses and displacements in softening zone can be calculated. The correctness and reliability of the proposed approach were performed by the existing solutions.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Qifeng Guo ◽  
Jiliang Pan ◽  
Xinghui Wu ◽  
Xun Xi ◽  
Meifeng Cai

According to the strain-softening characteristics of rock mass, an ideal elastic strain-softening model is developed, and the surrounding rock of tunnels is subdivided into the plastic broken zone, plastic strain-softening zone, and elastic zone. Based on the generalized spatially mobilized plane criterion, an elastic-plastic analytical solution of a circular tunnel is derived. The effects of intermediate principal stress, strain softening, and dilatancy are considered in the unified solution. The stress, displacement, and plastic zone radius of surrounding rock based on the SMP criterion are compared with those based on the Mohr–Coulomb criterion. Furthermore, the effects of parameters such as the softening modulus, dilatancy angle, and internal friction angle on the deformation and stress of tunnels are discussed. It has been found that the larger the dilatancy angle is, the larger the plastic zone displacement and the radius of the broken zone are. The larger the internal friction angle, the smaller the sizes of the plastic zone, the strain-softening zone, and the broken zone are. The deformation of surrounding rock in the broken zone is more sensitive to the internal friction angle than that in the strain-softening zone. The unified solution based on the SMP criterion provides a well understanding for the elastic-plastic state of tunnels, which can be the guidance for tunnel excavations and support designs.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Tianming Su ◽  
Hanyu Peng ◽  
Hongyan Liu

The viewpoint that the ground initial elastic displacement and the interaction between the ground response curve (GRC) and support response curve (SRC) in the surrounding rock should be considered at the same time in the mechanical analysis of the circular tunnel is proposed, and its solution method is also established. Meanwhile, in order to consider the effect of the intermediate principle stress, Drucker-Prager criterion is introduced to describe the yield property of the surrounding rock. The calculation example indicates that the final radial displacement of the tunnel circumference will increase when the ground initial elastic displacement in the surrounding rock is considered before the support structure is applied, which indicates that it is necessary to consider the ground initial elastic displacement in the surrounding rock before the support structure is applied. With increasing the support resistance force and the initial field stress, the plastic zone radius in the surrounding rock and the radial displacement of the tunnel circumference will decrease and increase, respectively, while with increasing the rock internal friction angle and cohesion, the plastic zone radius in the surrounding rock and the radial displacement of the tunnel circumference both decrease. Meanwhile, with the stress Lode parameter increasing from −1 to 1, the plastic zone radius in the surrounding rock and the radial displacement of the tunnel circumference both greatly decrease and then slightly increase. It indicates that the intermediate principle stress has some effect on the calculation results.


2017 ◽  
Vol 1142 ◽  
pp. 344-348 ◽  
Author(s):  
Jian Xin Han ◽  
Lei Wang ◽  
Bei Jiang ◽  
Chun Mei Zheng

To overcome the defect that the support pressure is required to be measured or supposed in elasto-plastic analysis in strain-softening rock mass, by the connection of the support pressure imposed on surrounding rock mass, without assuming the support pressure is known a priori, an improved model of solving plastic radius and the distribution of radial displacement around the circular tunnel is proposed. Based on Hoek-Brown yield criterion, the results obtained by strain-softening model are compared with those of elastic perfectly brittle and elastic perfectly plastic models. The examples reveal that the difference of plastic radius obtained by the three models is comparatively smaller, but the difference of radial displacement is comparatively larger. The proposed model overcomes some defects of the previous studies in deformation analysis for tunnel.


2013 ◽  
Vol 47 (4) ◽  
pp. 1674
Author(s):  
A. Antoniou ◽  
I. Spyropoulos

The influence of rockmass properties at the plastic zone around a circular tunnel. Tunneling in weak rock has to be carefully designed since the overestimation of weak rock mass properties or the underestimated design and behaviour of the support system can lead to increased cost or even to failure. Based on the generalized Hoek-Brown failure criterion this paper presents relation between geometrical parameters (tunnel's radius, depth, etc) and rock's mass parameters (GSI, mi, etc) with the extension of plastic zone around a circular tunnel, as well as the wall displacement of an unsupported circular tunnel. All the analyses were executed considering hydrostatic stress field and isotropic behaviour of the surrounding rock mass


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878208
Author(s):  
Jihong Wei ◽  
Jin Liu ◽  
Zezhuo Song ◽  
Yulong Zhu ◽  
Yuxia Bai

The rock mass has special properties, such as inhomogeneity, anisotropy, discontinuity, and nonelastic, due to various internal or external stress in the process of its formation. In this study, similar materials are considered to simulate the rock mass and analyze the failure law using laboratory tri-axial tests based on the similarity principle. The rock mass and discontinuity are constituted in the process of model construction by considering the influence of the orientation, spacing, and number of discontinuity, respectively. Then, the influences of the orientation, spacing, number of discontinuity, and the combination of different discontinuous strength on rupture mechanism of the rock mass are analyzed by considering lots of numerical test schemes using the discontinuous deformation analysis method. Finally, considering water conveyance tunnel in Jurong Pumped Storage Power Station in China as a test case, the tunnel stability under different discontinuities combination is analyzed using discontinuous deformation analysis method. The influence of the optimal tunnel axis and tunnel shape on the stability of surrounding rock is studied by comparative analysis of surrounding rock stability under different tunnel axis and tunnel shapes. The stress concentration in case of the circular tunnel with corner is somehow less than that of the rectangular one.


2017 ◽  
Vol 224 ◽  
pp. 43-61 ◽  
Author(s):  
Lan Cui ◽  
Jun-Jie Zheng ◽  
You-Kou Dong ◽  
Biao Zhang ◽  
An Wang

2013 ◽  
Vol 438-439 ◽  
pp. 607-611 ◽  
Author(s):  
Da Hai Wang ◽  
Hao Ran Guo ◽  
Hui Zhao ◽  
Yan Wei Guo

Principal influencing factors of the strength of rock mass with weak joints were studied in this paper. Dip angles of weak joints in addition with the confining pressure is studied based on strain-softening/hardening plasticity model. The broken mechanism from the perspective of plastic zone was analyzed. The strength of rock mass with weak joints is mainly under control of the joints occurrence, the joints dip and the rock strength, and great influenced by the confining pressure. A higher strength is obtained with a higher confining pressure, the broken mechanisms varies with different joints dips.


Sign in / Sign up

Export Citation Format

Share Document