scholarly journals Identifying Important Nodes in Complex Networks Based on Multiattribute Evaluation

2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Hui Xu ◽  
Jianpei Zhang ◽  
Jing Yang ◽  
Lijun Lun

Assessing and measuring the importance of nodes in a complex network are of great theoretical and practical significance to improve the robustness of the actual system and to design an efficient system structure. The classical local centrality measures of important nodes only take the number of node neighbors into consideration but ignore the topological relations and interactions among neighbors. Due to the complexity of the algorithm itself, the global centrality measure cannot be applied to the analysis of large-scale complex network. The k-shell decomposition method considers the core node located in the center of the network as the most important node, but it only considers the residual degree and neglects the interaction and topological structure between the node and its neighbors. In order to identify the important nodes efficiently and accurately in the network, this paper proposes a local centrality measurement method based on the topological structure and interaction characteristics of the nodes and their neighbors. On the basis of the k-shell decomposition method, the method we proposed introduces two properties of structure hole and degree centrality, which synthetically considers the nodes and their neighbors’ network location information, topological structure, scale characteristics, and the interaction between different nuclear layers of them. In this paper, selective attacks on four real networks are, respectively, carried out. We make comparative analyses of the averagely descending ratio of network efficiency between our approach and other seven indices. The experimental results show that our approach is valid and feasible.

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2294
Author(s):  
Attila Mester ◽  
Andrei Pop ◽  
Bogdan-Eduard-Mădălin Mursa ◽  
Horea Greblă ◽  
Laura Dioşan ◽  
...  

The stability and robustness of a complex network can be significantly improved by determining important nodes and by analyzing their tendency to group into clusters. Several centrality measures for evaluating the importance of a node in a complex network exist in the literature, each one focusing on a different perspective. Community detection algorithms can be used to determine clusters of nodes based on the network structure. This paper shows by empirical means that node importance can be evaluated by a dual perspective—by combining the traditional centrality measures regarding the whole network as one unit, and by analyzing the node clusters yielded by community detection. Not only do these approaches offer overlapping results but also complementary information regarding the top important nodes. To confirm this mechanism, we performed experiments for synthetic and real-world networks and the results indicate the interesting relation between important nodes on community and network level.


2021 ◽  
Author(s):  
Sarkhosh S. Chaharborj ◽  
Shahriar S. Chaharborj ◽  
Phang Pei See

Abstract We study importance of influential nodes in spreading of epidemic COVID-19 in a complex network. We will show that quarantine of important and influential nodes or consider of health protocols by efficient nodes is very helpful and effective in the controlling of spreading epidemic COVID-19 in a complex network. Therefore, identifying influential nodes in complex networks is the very significant part of dependability analysis, which has been a clue matter in analyzing the structural organization of a network. The important nodes can be considered as a person or as an organization. To find the influential nodes we use the technique for order preference by similarity to ideal solution (TOPSIS) method with new proposed formula to obtain the efficient weights. We use various centrality measures as the multi-attribute of complex network in the TOPSIS method. We define a formula for spreading probability of epidemic disease in a complex network to study the power of infection spreading with quarantine of important nodes. In the following, we use the Susceptible–Infected (SI) model to figure out the performance and efficiency of the proposed methods. The proposed method has been examined for efficiency and practicality using numerical examples.


2018 ◽  
pp. 172-182 ◽  
Author(s):  
Shengmin CAO

This paper mainly studies the application of intelligent lighting control system in different sports events in large sports competition venues. We take the Xiantao Stadium, a large­scale sports competition venue in Zaozhuang City, Shandong Province as an example, to study its intelligent lighting control system. In this paper, the PID (proportion – integral – derivative) incremental control model and the Karatsuba multiplication model are used, and the intelligent lighting control system is designed and implemented by multi­level fuzzy comprehensive evaluation model. Finally, the paper evaluates the actual effect of the intelligent lighting control system. The research shows that the intelligent lighting control system designed in this paper can accurately control the lighting of different sports in large stadiums. The research in this paper has important practical significance for the planning and design of large­scale sports competition venues.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950331
Author(s):  
Shiguo Deng ◽  
Henggang Ren ◽  
Tongfeng Weng ◽  
Changgui Gu ◽  
Huijie Yang

Evolutionary processes of many complex networks in reality are dominated by duplication and divergence. This mechanism leads to redundant structures, i.e. some nodes share most of their neighbors and some local patterns are similar, called redundancy of network. An interesting reverse problem is to discover evolutionary information from the present topological structure. We propose a quantitative measure of redundancy of network from the perspective of principal component analysis. The redundancy of a community in the empirical human metabolic network is negatively and closely related with its evolutionary age, which is consistent with that for the communities in the modeling protein–protein network. This behavior can be used to find the evolutionary difference stored in cellular networks.


2021 ◽  
Author(s):  
Edwin Lughofer ◽  
Mahardhika Pratama

AbstractEvolving fuzzy systems (EFS) have enjoyed a wide attraction in the community to handle learning from data streams in an incremental, single-pass and transparent manner. The main concentration so far lied in the development of approaches for single EFS models, basically used for prediction purposes. Forgetting mechanisms have been used to increase their flexibility, especially for the purpose to adapt quickly to changing situations such as drifting data distributions. These require forgetting factors steering the degree of timely out-weighing older learned concepts, whose adequate setting in advance or in adaptive fashion is not an easy and not a fully resolved task. In this paper, we propose a new concept of learning fuzzy systems from data streams, which we call online sequential ensembling of fuzzy systems (OS-FS). It is able to model the recent dependencies in streams on a chunk-wise basis: for each new incoming chunk, a new fuzzy model is trained from scratch and added to the ensemble (of fuzzy systems trained before). This induces (i) maximal flexibility in terms of being able to apply variable chunk sizes according to the actual system delay in receiving target values and (ii) fast reaction possibilities in the case of arising drifts. The latter are realized with specific prediction techniques on new data chunks based on the sequential ensemble members trained so far over time. We propose four different prediction variants including various weighting concepts in order to put higher weights on the members with higher inference certainty during the amalgamation of predictions of single members to a final prediction. In this sense, older members, which keep in mind knowledge about past states, may get dynamically reactivated in the case of cyclic drifts, which induce dynamic changes in the process behavior which are re-occurring from time to time later. Furthermore, we integrate a concept for properly resolving possible contradictions among members with similar inference certainties. The reaction onto drifts is thus autonomously handled on demand and on the fly during the prediction stage (and not during model adaptation/evolution stage as conventionally done in single EFS models), which yields enormous flexibility. Finally, in order to cope with large-scale and (theoretically) infinite data streams within a reasonable amount of prediction time, we demonstrate two concepts for pruning past ensemble members, one based on atypical high error trends of single members and one based on the non-diversity of ensemble members. The results based on two data streams showed significantly improved performance compared to single EFS models in terms of a better convergence of the accumulated chunk-wise ahead prediction error trends, especially in the case of regular and cyclic drifts. Moreover, the more advanced prediction schemes could significantly outperform standard averaging over all members’ outputs. Furthermore, resolving contradictory outputs among members helped to improve the performance of the sequential ensemble further. Results on a wider range of data streams from different application scenarios showed (i) improved error trend lines over single EFS models, as well as over related AI methods OS-ELM and MLPs neural networks retrained on data chunks, and (ii) slightly worse trend lines than on-line bagged EFS (as specific EFS ensembles), but with around 100 times faster processing times (achieving low processing times way below requiring milli-seconds for single samples updates).


Author(s):  
Yijun Liu ◽  
Milind Bapat

Some recent development of the fast multipole boundary element method (BEM) for modeling acoustic wave problems in both 2-D and 3-D domains are presented in this paper. First, the fast multipole BEM formulation for 2-D acoustic wave problems based on a dual boundary integral equation (BIE) formulation is presented. Second, some improvements on the adaptive fast multipole BEM for 3-D acoustic wave problems based on the earlier work are introduced. The improvements include adaptive tree structures, error estimates for determining the numbers of expansion terms, refined interaction lists, and others in the fast multipole BEM. Examples involving 2-D and 3-D radiation and scattering problems solved by the developed 2-D and 3-D fast multipole BEM codes, respectively, will be presented. The accuracy and efficiency of the fast multipole BEM results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale acoustic wave problems that are of practical significance.


2018 ◽  
Vol 29 (08) ◽  
pp. 1850075
Author(s):  
Tingyuan Nie ◽  
Xinling Guo ◽  
Mengda Lin ◽  
Kun Zhao

The quantification for the invulnerability of complex network is a fundamental problem in which identifying influential nodes is of theoretical and practical significance. In this paper, we propose a novel definition of centrality named total information (TC) which derives from a local sub-graph being constructed by a node and its neighbors. The centrality is then defined as the sum of the self-information of the node and the mutual information of its neighbor nodes. We use the proposed centrality to identify the importance of nodes through the evaluation of the invulnerability of scale-free networks. It shows both the efficiency and the effectiveness of the proposed centrality are improved, compared with traditional centralities.


Author(s):  
Volodymyr Bondarenko ◽  
◽  
Oleksandr Filonenko ◽  
Mykhailo Petlovanyi ◽  
Vladyslav Ruskykh ◽  
...  

Purpose. Experimental studies of the interaction of blast-furnace and steel-making slags with open pit waters during their direct contact and assessment of the volume of filling of the formed man-made cavities during mining of mineral deposits. Methods. Based on the analysis, the current low level of metallurgical slag and the lack of real and effective directions of their large-scale utilization were determined. The laboratory studies of the interaction of metallurgical slags with open pit water at a certain time of interaction, generally accepted methods for studying the chemical composition and concentration of substances in water, computer-aided design software packages and drawings to determine the volumes of the open pit mined-out area were used. Results. The dynamics of changes in the products of interactions of steel-smelting slags with open-pit waters at a certain ratio and period of interaction was investigated. It was found that the concentration of pollutants upon contact of water with steel-making slag changes according to polynomial dependences on the time of their interaction, decreasing by the 30th day, which eliminates the danger for the aquifer. The safest type of metallurgical slag was recommended for the formation of the bottom layer of the backfill massif. The volumes of the mined-out area of the open pit were determined in detail to assess the volumes of placement of the backfill material based on metallurgical slags. Scientific novelty. The safety of the contact of backfill materials based on steelmaking slags with open pit water was scientifically proven, which is confirmed by the established polynomial patterns of changes in concentrations and pollutants from the ratio and time of interaction. Practical significance. The formation of the backfill massif on the basis of blast-furnace dump and steel-smelting slags will allow achieving an environmental effect, such as their safe disposal as a reclamation of technologically disturbed lands by mining and restoration of the economic value of the land plot, as well as preventing the formation of new dumps.


Sign in / Sign up

Export Citation Format

Share Document