scholarly journals Systematic Exposition of Mesenchymal Stem Cell for Inflammatory Bowel Disease and Its Associated Colorectal Cancer

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jingjing Kang ◽  
Li Zhang ◽  
Xiao Luo ◽  
Xiangyu Ma ◽  
Gaoying Wang ◽  
...  

Mesenchymal stem cells (MSCs) therapy has been applied to a wide range of diseases with excessive immune response, including inflammatory bowel disease (IBD), owing to its powerful immunosuppression and its ability to repair tissue lesions. Different sources of MSCs show different therapeutic properties. Engineering managements are able to enhance the immunomodulation function and the survival of MSCs involved in IBD. The therapeutic mechanism of MSCs in IBD mainly focuses on cell-to-cell contact and paracrine actions. One of the promising therapeutic options for IBD can focus on exosomes of MSCs. MSCs hold promise for the treatment of IBD-associated colorectal cancer because of their tumor-homing function and chronic inflammation inhibition. Encouraging results have been obtained from clinical trials in IBD and potential challenges caused by MSCs therapy are getting solved. This review can assist investigators better to understand the research progress for enhancing the efficacy of MSCs therapy involved in IBD and CAC.




2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A38-A38
Author(s):  
Shilpa Ravindran ◽  
Heba Sidahmed ◽  
Harshitha Manjunath ◽  
Rebecca Mathew ◽  
Tanwir Habib ◽  
...  

BackgroundPatients with inflammatory bowel disease (IBD) have increased risk of developing colorectal cancer (CRC), depending on the duration and severity of the disease. The evolutionary process in IBD is driven by chronic inflammation leading to epithelial-to-mesenchymal transition (EMT) events in colonic fibrotic areas. EMT plays a determinant role in tumor formation and progression, through the acquisition of ‘stemness’ properties and the generation of neoplastic cells. The aim of this study is to monitor EMT/cancer initiating tracts in IBD in association with the deep characterization of inflammation in order to assess the mechanisms of IBD severity and progression towards malignancy.Methods10 pediatric and 20 adult IBD patients, admitted at Sidra Medicine (SM) and Hamad Medical Corporation (HMC) respectively, have been enrolled in this study, from whom gut tissue biopsies (from both left and right side) were collected. Retrospectively collected tissues (N=10) from patients with malignancy and history of IBD were included in the study. DNA and RNA were extracted from fresh small size (2–4 mm in diameter) gut tissues using the BioMasher II (Kimble) and All Prep DNA/RNA kits (Qiagen). MicroRNA (miRNA; N=700) and gene expression (N=800) profiling have been performed (cCounter platform; Nanostring) as well as the methylation profiling microarray (Infinium Methylation Epic Bead Chip kit, Illumina) to interrogate up to 850,000 methylation sites across the genome.ResultsDifferential miRNA profile (N=27 miRNA; p<0.05) was found by the comparison of tissues from pediatric and adult patients. These miRNAs regulate: i. oxidative stress damage (e.g., miR 99b), ii. hypoxia induced autophagy; iii. genes associated with the susceptibility to IBD (ATG16L1, NOD2, IRGM), iv. immune responses, such as TH17 T cell subset (miR 29). N=6 miRNAs (miR135b, 10a196b, 125b, let7c, 375) linked with the regulation of Wnt/b-catenin, EM-transaction, autophagy, oxidative stress and play role also in cell proliferation and mobilization and colorectal cancer development were differentially expressed (p<0.05) in tissues from left and right sides of gut. Gene expression signature, including genes associated with inflammation, stemness and fibrosis, has also been performed for the IBD tissues mentioned above. Methylation sites at single nucleotide resolution have been analyzed.ConclusionsAlthough the results warrant further investigation, differential genomic profiling suggestive of altered pathways involved in oxidative stress, EMT, and of the possible stemness signature was found. The integration of data from multiple platforms will provide insights of the overall molecular determinants in IBD patients along with the evolution of the disease.Ethics ApprovalThis study was approved by Sidra Medicine and Hamad Medical Corporation Ethics Boards; approval number 180402817 and MRC-02-18-096, respectively.



2015 ◽  
Vol 36 (9) ◽  
pp. 999-1007 ◽  
Author(s):  
Hamed Khalili ◽  
Jian Gong ◽  
Hermann Brenner ◽  
Thomas R. Austin ◽  
Carolyn M. Hutter ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document