scholarly journals Anticorrosion Performance of LDH Coating Prepared by CO2 Pressurization Method

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaochen Zhang ◽  
Peng Jiang ◽  
Chunyan Zhang ◽  
Bateer Buhe ◽  
Bin Liu ◽  
...  

Many surface treatment methods are used to improve the corrosion resistance of magnesium alloys. LDH (layered double hydroxides) conversion coatings are currently found in the most environmentally friendly and pollution-free coatings of magnesium alloy. In this study, the CO2 pressurization method was applied to the preparation of LDH coating on magnesium alloy for the first time. The effect of CO2 pressurization on the formation and corrosion resistance of LDH coating on AZ91D alloy was investigated. The hardness and adhesion were significantly higher on LDH coating in the case of CO2 pressurization than it is in atmospheric pressure. The surface and cross-sectional morphologies show that LDH coating is more compact in the case of CO2 pressurization than with atmospheric pressure. The results of the polarization curve, hydrogen evolution, and immersion tests indicate that the corrosion resistance of the LDH coating prepared by the CO2 pressurization method was significantly improved.

2015 ◽  
Vol 3 (8) ◽  
pp. 1667-1676 ◽  
Author(s):  
Jiadi Sun ◽  
Ye Zhu ◽  
Long Meng ◽  
Wei Wei ◽  
Yang Li ◽  
...  

Self-assembled nanoparticles loaded with bioactive agents were electrodeposited to provide the magnesium alloy with controlled release and corrosion resistance properties.


2011 ◽  
Vol 194-196 ◽  
pp. 1221-1224 ◽  
Author(s):  
Zhong Jun Wang ◽  
Yang Xu ◽  
Jing Zhu

The microstructures and corrosion resistance of AZ91 and AZ91+0.5 wt.% erbium (Er) magnesium alloys were studied, respectively. The results show that the Er addition in scrap AZ91 magnesium alloy can improve the corrosion resistance, markedly. The discontinuous precipitation phase (DPP) for Mg17Al12was retarded and the amount of DPP was decreased by 41% due to the formation of Al8ErMn4phase during solidification. The amount of continuous precipitation phase (CPP) in grains was decreased by 8% because of the formation of Al7ErMn5phase during solidification.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1078-1082 ◽  
Author(s):  
Yang Yang Lv ◽  
Ling Feng Zhang

Magnesium alloy as a green material in the 21st century, because of its excellent physical and mechanical properties of metallic materials as an ideal in the automotive industry, electronic industry and aviation, aerospace and other industries[1]. However, poor corrosion resistance of magnesium alloys become an important issue hinder application of magnesium alloys[2]. So magnesium alloy corrosion problems and the current status of research paper reviews several magnesium alloy protection methods at home and abroad, and also highlighted with our latest laser shock (LSP) study of AZ91 magnesium alloy at high strain rates of corrosion resistance results.


2016 ◽  
Vol 60 (5) ◽  
pp. 132-138 ◽  
Author(s):  
J. Drábiková ◽  
F. Pastorek ◽  
S. Fintová ◽  
P. Doležal ◽  
J. Wasserbauer

Abstract Magnesium and its alloys are perspective bio-degradable materials used mainly due to their mechanical properties similar to those of mammal bones. Potential problems in utilization of magnesium alloys as bio-materials may relate to their rapid degradation which is associated with resorption problems and intensive hydrogen evolution. These problems can be eliminated by magnesium alloys surface treatment. Therefore, this work aims with analysis of the influence of fluoride conversion coating on corrosion characteristics of magnesium alloy. Unconventional technique by insertion of wrought magnesium alloy AZ61 into molten Na[BF4] salt at temperature of 450 °C at different treatment times was used for fluoride conversion coating preparation. The consequent effect of the coating on magnesium alloy corrosion was analyzed by means of linear polarization in simulated body fluid solution at 37 ± 2 °C. The obtained results prove that this method radically improve corrosion resistance of wrought AZ61magnesium alloy even in the case of short time of coating preparation.


2021 ◽  
Vol 31 (6) ◽  
pp. 1612-1627
Author(s):  
Yu XIA ◽  
Liang WU ◽  
Wen-hui YAO ◽  
Meng HAO ◽  
Jing CHEN ◽  
...  

2011 ◽  
Vol 299-300 ◽  
pp. 211-214 ◽  
Author(s):  
Li Yuan Niu ◽  
Zi Mu Shi ◽  
Ji Jing Lin ◽  
Yong Li ◽  
Lin Chao Xu ◽  
...  

Foam magnesium alloy was an idea substitute of hard tissue of human bodies because its elasticity module was close to the bone of human. In the paper, foam degradable magnesium alloys were prepared by “Press-Dissolution-Vacuum sintering-Hot treatment-Aging” powder manufacturing process firstly. Then samples were coated by immersion in a bath containing phosphate and rare earths lanthanum. Results show that, Mg-0.9Mn foam magnesium alloys after hot treatment had better anticorrosion performance; and coated foam magnesium alloys form the bath with phosphate lanthanum chloride had lower rate of degradation.


Sign in / Sign up

Export Citation Format

Share Document