scholarly journals History of Suicide Attempt Is Associated with Reduced Medial Prefrontal Cortex Activity during Emotional Decision-Making among Men with Schizophrenia: An Exploratory fMRI Study

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Stéphane Potvin ◽  
Andràs Tikàsz ◽  
Stéphane Richard-Devantoy ◽  
Ovidiu Lungu ◽  
Alexandre Dumais

Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S) and 19 without a history of suicidal attempt (SCZ − S). Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task. A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation), relative to both SCZ − S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making.

2020 ◽  
Author(s):  
Seongmin A. Park ◽  
Douglas S. Miller ◽  
Erie D. Boorman

ABSTRACTGeneralizing experiences to guide decision making in novel situations is a hallmark of flexible behavior. It has been hypothesized such flexibility depends on a cognitive map of an environment or task, but directly linking the two has proven elusive. Here, we find that discretely sampled abstract relationships between entities in an unseen two-dimensional (2-D) social hierarchy are reconstructed into a unitary 2-D cognitive map in the hippocampus and entorhinal cortex. We further show that humans utilize a grid-like code in several brain regions, including entorhinal cortex and medial prefrontal cortex, for inferred direct trajectories between entities in the reconstructed abstract space during discrete decisions. Moreover, these neural grid-like codes in the entorhinal cortex predict neural decision value computations in the medial prefrontal cortex and temporoparietal junction area during choice. Collectively, these findings show that grid-like codes are used by the human brain to infer novel solutions, even in abstract and discrete problems, and suggest a general mechanism underpinning flexible decision making and generalization.


2003 ◽  
Vol 53 (3) ◽  
pp. 211-215 ◽  
Author(s):  
K.Luan Phan ◽  
Stephan F Taylor ◽  
Robert C Welsh ◽  
Laura R Decker ◽  
Douglas C Noll ◽  
...  

2018 ◽  
Vol 2 ◽  
pp. 239821281877386 ◽  
Author(s):  
Miranda J. Francoeur ◽  
Robert G. Mair

Background: To respond adaptively in a dynamic environment, it is important for organisms to utilise information about recent events to decide between response options. Methods: To examine the role of medial prefrontal cortex in adaptive decision-making, we recorded single neuron activity in rats performing a dynamic delayed non-matching to position task. Results: We recorded activity from 1335 isolated neurons, 458 (34%) with criterion event-related activity, of which 431 (94%) exhibited 1 of 10 distinct excitatory response types: five at different times relative to delivery (or lack) of reinforcement following sample and choice responses and five correlated with movements or lever press actions that occurred multiple times in each trial. Normalised population averages revealed a precisely timed cascade of population responses representing the temporal organisation behavioural events that constitute delayed non-matching to position trials. Firing field analyses identified a subset of neurons with restricted spatial fields: responding to the conjunction of a behavioural event with a specific location. Anatomical analyses showed considerable overlap in the distribution of different response types in medial prefrontal cortex with a significant trend for dorsal areas to contain more neurons with action-related activity and ventral areas more responses related to action outcomes. Conclusion: These results indicate that medial prefrontal cortex contains discrete populations of neurons that represent the temporal organisation of actions and outcomes during delayed non-matching to position trials. They support the hypothesis that medial prefrontal cortex promotes flexible control of complex behaviours by action–outcome contingencies.


Brain ◽  
2008 ◽  
Vol 131 (5) ◽  
pp. 1311-1322 ◽  
Author(s):  
L. Clark ◽  
A. Bechara ◽  
H. Damasio ◽  
M. R. F. Aitken ◽  
B. J. Sahakian ◽  
...  

2015 ◽  
Vol 349 (1-2) ◽  
pp. 202-208 ◽  
Author(s):  
Gabor Perlaki ◽  
Gergely Orsi ◽  
Attila Schwarcz ◽  
Peter Bodi ◽  
Eniko Plozer ◽  
...  

2019 ◽  
Vol 116 (9) ◽  
pp. 3799-3804 ◽  
Author(s):  
Tingting Sun ◽  
Zihua Song ◽  
Yanghua Tian ◽  
Wenbo Tian ◽  
Chunyan Zhu ◽  
...  

Obsessive-compulsive disorder (OCD) affects ∼1 to 3% of the world’s population. However, the neural mechanisms underlying the excessive checking symptoms in OCD are not fully understood. Using viral neuronal tracing in mice, we found that glutamatergic neurons from the basolateral amygdala (BLAGlu) project onto both medial prefrontal cortex glutamate (mPFCGlu) and GABA (mPFCGABA) neurons that locally innervate mPFCGlu neurons. Next, we developed an OCD checking mouse model with quinpirole-induced repetitive checking behaviors. This model demonstrated decreased glutamatergic mPFC microcircuit activity regulated by enhanced BLAGlu inputs. Optical or chemogenetic manipulations of this maladaptive circuitry restored the behavioral response. These findings were verified in a mouse functional magnetic resonance imaging (fMRI) study, in which the BLA–mPFC functional connectivity was increased in OCD mice. Together, these findings define a unique BLAGlu→mPFCGABA→Glu circuit that controls the checking symptoms of OCD.


2019 ◽  
Vol 39 (46) ◽  
pp. 9207-9220 ◽  
Author(s):  
Kevin M. Braunscheidel ◽  
Michael P. Okas ◽  
Michaela Hoffman ◽  
Patrick J. Mulholland ◽  
Stan B. Floresco ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65274 ◽  
Author(s):  
Gui Xue ◽  
Qinghua He ◽  
Zhong-Lin Lu ◽  
Irwin P. Levin ◽  
Qi Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document