scholarly journals Influence of Rotation and Magnetic Fields on a Functionally Graded Thermoelastic Solid Subjected to a Mechanical Load

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Ankush Gunghas ◽  
Rajesh Kumar ◽  
Sunita Deswal ◽  
Kapil Kumar Kalkal

The current manuscript is presented to study two-dimensional deformations in a nonhomogeneous, isotropic, rotating, magneto-thermoelastic medium in the context of Green-Naghdi model III. It is assumed that the functionally graded material has nonhomogeneous mechanical and thermal properties in the x-direction. The exact expressions for the displacement components, temperature field, and stresses are obtained in the physical domain by using normal mode technique. These are also computed numerically for a copper-like material and presented graphically to observe the variations of the considered physical variables. Comparisons of the physical quantities are shown in figures to depict the effects of angular velocity, nonhomogeneity parameter, and magnetic field.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajesh Kumar ◽  
Seema Thakran ◽  
Ankush Gunghas ◽  
Kapil Kumar Kalkal

Purpose The purpose of this study is to analyze the two-dimensional disturbances in a nonlocal, functionally graded, isotropic thermoelastic medium under the purview of the Green–Lindsay model of generalized thermoelasticity. The formulation is subjected to a mechanical load. All the thermomechanical properties of the solid are assumed to vary exponentially with the position. Design/methodology/approach Normal mode technique is proposed to obtain the exact expressions for the displacement components, stresses and temperature field. Findings Numerical computations have been carried out with the help of MATLAB software and the results are illustrated graphically. These are also calculated numerically for a magnesium crystal-like material and illustrated through graphs. Theoretical and numerical results demonstrate that the nonlocality and nonhomogeneity parameters have significant effects on the considered physical fields. Originality/value Influences of nonlocality and nonhomogeneity on the physical quantities are carefully analyzed for isothermal and insulated boundaries. The present work is useful and valuable for analysis of problems involving mechanical shock, nonlocal parameter, functionally graded materials and elastic deformation.


2019 ◽  
Vol 15 (2) ◽  
pp. 418-436 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Ramadan S. Tantawi ◽  
Mohamed I.M. Hilal

PurposeThe purpose of this paper is to report effect of rotation of micropolar thermoelastic solid with microtemperatures heated by laser pulses. The problem was solved analytically to obtain the expressions of the physical quantities.Design/methodology/approachThe analytical method used was the normal mode.FindingsNumerical results for the physical quantities were presented graphically and the results were analyzed. The comparisons were established in variant cases of the effects used and then shown graphically.Originality/valueIn the present work, the authors shall discuss the effect of rotation and temperature-dependent properties with the laser pulses in the micropolar thermoelastic medium with microtemperatures. This problem is very important in more empirical branches such as the human body and earthquake engineering.


Author(s):  
M. Bateni ◽  
M. R. Eslami

This work presents a closed form investigation on the effect of temperature gradient on the buckling resistance of functionally graded material (FGM) shallow arches. The constituents are assumed to vary smoothly through the thickness of the arch according to the power law distribution and they are assumed to be temperature dependent. The arches subjected to the both uniform distributed radial load and central concentrated load and both boundary supports are supposed to be pinned. The temperature field is approximated by one-dimensional linear gradient through the thickness of the arch and the displacement field approximated by classical arches model. Also, Donnell type kinematics is utilized to extract the suitable strain-displacement relations for shallow arches. Adjacent equilibrium criterion is used to buckling analysis, and, critical bifurcation load is obtain in the complete presence of pre-buckling deformations. Results discloses the usefulness of using the FGM shallow arches in thermal environment because the temperature gradient enhances the buckling resistance of these structures when they are subjected to a lateral mechanical load.


2019 ◽  
Vol 10 (6) ◽  
pp. 838-849 ◽  
Author(s):  
Aboubakar Seddik Bouchikhi

Purpose The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) functionally graded material (FGM) plate subjected to tensile mechanical load. Design/methodology/approach For this purpose the variations of the material properties are applied at the integration points and at the nodes by implementing a subroutine USDFLD in the ABAQUS software. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is demonstrated. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is examined; also the effect of different parameters for double notch FGM plate is investigated as well as the effect of band of FGM within the ceramic plate to reduce J-integral. Findings According to the numerical analysis, all parameters above played an important role in determining the J-integral. Originality/value The present study consists in investigating the simulation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) FGM plate under Mode I. The J-integral is determined for various load applied. The cracked plate is joined by bonding an FGM layer to TiB plate on its double side. The determination of the gain on J-integral by using FGM layer is highlighted. The calculation of J-integral of FGM’s involves the direction of the radius of the notch in order to reduce the J-integral.


2018 ◽  
Vol 34 ◽  
pp. 01033 ◽  
Author(s):  
Abdolreza Toudehdehghan ◽  
Md. Mujibur Rahman ◽  
Faris Tarlochan

The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT). The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model). The second model was consisting of Functionally Graded Material (FGM) as a coated layer and metal substrate (FGC model). From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sunita Deswal ◽  
Ravinder Poonia ◽  
Kapil Kumar Kalkal

PurposeThe present investigation is concerned with the two-dimensional deformations in an inhomogeneous fiber-reinforced thermoelastic medium under the influence of gravity in the context of Green–Lindsay theory.Design/methodology/approachMaterial properties are supposed to be graded in x-direction, and normal mode technique is adopted to obtain the exact expressions for the temperature field, displacement components and stresses.FindingsNumerical computations have been carried out with the help of MATLAB software, and the results are depicted graphically to observe the disturbances induced in the considered medium. Comparisons made within the theory of the physical quantities are shown in figures to highlight the effects of fiber reinforcement, inhomogeneity parameter, gravity and time.Originality/valueIn the present work, we have investigated the effects of fiber reinforcement, inhomogeneity parameter, gravity and time in an inhomogeneous, fiber-reinforced thermoelastic medium under the influence of gravity. Although various investigations do exist to observe the disturbances in a thermoelastic medium under the effects of different parameters, the work in its present form i.e. thermally induced vibrations in an inhomogeneous fiber-reinforced thermoelastic material with gravity has not been studied till now. The present work is useful and valuable for analysis of problems involving thermal shock, gravity parameter, fiber reinforcement, inhomogeneous and elastic deformation.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wen-Feng Lin

Functionally graded materials have been widely used in engineering and human health applications. The issues about mechanical behavior of functionally graded material have received considerable attention. However, because of the complexity of material property, geometric profile, and mechanical load, there is still lack of proper analytic solutions about deformation and stress in many articles. The principal goal of this research is to study the effect of mechanical load on deformation and stress in rotating thin-walled functionally gradient material annular disk with exponentially-varying profile and properties. The inner and outer surfaces of annular disk are subjected to different pressures simultaneously. For this purpose, the infinitesimal theory of elasticity and axisymmetric plane stress assumptions has been proposed to formulate the governing equation. The governing equation is a generalized confluent hypergeometric differential equation, based on Whittaker’s functions; this is the first time that closed-form solutions of mechanical behaviors are revealed about proposed functionally gradient material model. Besides, another four boundary conditions are also discussed, i.e., the inner and outer surfaces of the annular disk are considered to be the combinations of free and clamped conditions. Numeric examples of two different functionally graded material properties are given to demonstrate displacement and stress solutions. Moreover, uniform disks made of homogeneous material under different boundary conditions are investigated, which are special cases of the proposed rotating functionally gradient material disks. Finally, some conclusions are made at the end of the present paper.


Sign in / Sign up

Export Citation Format

Share Document