scholarly journals Experimental Study on Directional Fracture Blasting of Cutting Seam Cartridge

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renshu Yang ◽  
Jinjing Zuo

Since the cutting seam cartridge has sound directional breaking effect, in order to explore its blasting wave mechanism, an experimental study was conducted on the blast wave of a cutting seam cartridge using a high-speed laser schlieren system and air overpressure test system. The research results show that during cartridge explosion, the cutting seam pipe can effectively control the energy release and detonation gas dynamic behaviors. Additionally, the cartridge blast wave and the detonation gas remain highly symmetrical in expansion form. The blast wave first propagates along the cutting seam direction, and the detonation gas initially expands from the seam in the direction of the cutting seam. The pressure in the cutting seam direction is higher than that in the noncutting seam direction. The blast wave change of the whole flow field of the cutting seam cartridge was numerically simulated and was basically consistent with the results of the schlieren test in distribution form. The presence of a cutting seam prolongs the blast wave effect. During expansion of the cutting seam pipe under the influence of a blast wave, the inner wall of the cutting seam pipe is mainly subject to tensile stress. When the tensile force applied to the inner wall reaches the local yield limit, the cutting seam pipe fails.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Shuai Feng ◽  
Wenjia Huang

Corrugated-board explosion-proof wall is the main means to prevent explosion shock wave damage, and it is important to study the effect of different corrugated plates on the shock wave. Using a high-speed schlieren experimental system and an air overpressure test system, the wave-blocking characteristics of different forms of corrugated plates are comprehensively studied. The schlieren images were used to analyze the influence that the corrugation shape of a corrugated plate has on the shock wave propagation characteristics. The results show that the reflection process of the triangular-, trapezoidal-, and half-cylindrical-shaped corrugated plates exhibit differences. The number of reflected waves from the triangular corrugated plate is much greater than that from the other corrugated plates, and it will consume more energy. The diffraction wave-front velocity has a trend of initially decreasing and then increasing and is also reduced by different degrees by the reflection. Comparative analysis of the schlieren images and the air shock wave overpressure test shows that plates corrugated with different corrugation shapes decrease the diffraction overpressure peak and exhibit a hysteresis.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


2021 ◽  
Vol 300 ◽  
pp. 124332
Author(s):  
Gongxun Deng ◽  
Wen Ma ◽  
Yong Peng ◽  
Shiming Wang ◽  
Song Yao ◽  
...  

1996 ◽  
Vol 61 (6) ◽  
pp. 856-867 ◽  
Author(s):  
Oldřich Brůha ◽  
Ivan Fořt ◽  
Pavel Smolka ◽  
Milan Jahoda

The frequency of turbulent macroinstability occurrence was measured in liquids agitated in a cylindrical baffled vessel. As it has been proved by preceding experimental results of the authors, the stochastic quantity with frequency of occurrence of 10-1 to 100 s-1 is concerned. By suitable choosing the viscosity of liquids and frequency of impeller revolutins, the region of Reynolds mixing numbers was covered from the pure laminar up to fully developed turbulent regime. In addition to the equipment making it possible to record automatically the macroinstability occurrence, also the visualization method and videorecording were employed. It enabled us to describe in more detail the form of entire flow field in the agitated system and its behaviour in connection with the macroinstability occurrence. It follows from the experiments made that under turbulent regime of flow of agitated liquids the frequency of turbulent macroinstability occurrence is the same as the frequency of the primary circulation of agitated liquid.


2007 ◽  
Vol 6 (3) ◽  
pp. 255-266 ◽  
Author(s):  
Anthony M. Choo ◽  
Jie Liu ◽  
Clarrie K. Lam ◽  
Marcel Dvorak ◽  
Wolfram Tetzlaff ◽  
...  

Object In experimental models of spinal cord injury (SCI) researchers have typically focused on contusion and transection injuries. Clinically, however, other injury mechanisms such as fracture–dislocation and distraction also frequently occur. The objective of the present study was to compare the primary damage in three clinically relevant animal models of SCI. Methods Contusion, fracture–dislocation, and flexion–distraction animal models of SCI were developed. To visualize traumatic increases in cellular membrane permeability, fluorescein–dextran was infused into the cerebrospi-nal fluid prior to injury. High-speed injuries (approaching 100 cm/second) were produced in the cervical spine of deeply anesthetized Sprague–Dawley rats (28 SCI and eight sham treated) with a novel multimechanism SCI test system. The animals were killed immediately thereafter so that the authors could characterize the primary injury in the gray and white matter. Sections stained with H & E showed that contusion and dislocation injuries resulted in similar central damage to the gray matter vasculature whereas no overt hemorrhage was detected following distraction. Contusion resulted in membrane disruption of neuronal somata and axons localized within 1 mm of the lesion epicenter. In contrast, membrane compromise in the dislocation and distraction models was observed to extend rostrally up to 5 mm, particularly in the ventral and lateral white matter tracts. Conclusions Given the pivotal nature of hemorrhagic necrosis and plasma membrane compromise in the initiation of downstream SCI pathomechanisms, the aforementioned differences suggest the presence of mechanism-specific injury regions, which may alter future clinical treatment paradigms.


Author(s):  
Cédric Lopez ◽  
François Malburet ◽  
André Barraco

This paper studies problematic of a mechanical system composed of different coupled parts submitted to a high speed shock and proposes analysis of anti vibratory passive and active methods based on an experimental and theoretical coupled approach. After a shock, different parts of the system oscillate. If one of them is excited at a particular frequency, such as its proper frequency, important oscillations appear and can lead to the deterioration of the system by introducing important stresses. In this paper, we propose an analysis in order to understand this kind of problem and what we can do to avoid it. Firstly, we discuss problematic and we expose the studied system. In a second time, we develop two approaches of modeling that allow us to understand the phenomenon by carrying out numerical simulations. Then cross checking of model is completed via experimental study on drop test bench. Passive minimization method of vibrations based on experimental and theoretical coupled approach is exposed. Finally, a comparative analysis of different methods of control and experimental results of controlled system are presented.


2006 ◽  
Vol 129 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Luis San Andrés ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e., simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10mm. Coast down rotor responses from 25krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5krpm to 15krpm with a whirl frequency at ∼50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Posttest inspection reveal wear spots on the top foils and rotor surface.


Sign in / Sign up

Export Citation Format

Share Document