Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions

2006 ◽  
Vol 129 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Luis San Andrés ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e., simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10mm. Coast down rotor responses from 25krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5krpm to 15krpm with a whirl frequency at ∼50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Posttest inspection reveal wear spots on the top foils and rotor surface.

Author(s):  
Luis San Andre´s ◽  
Dario Rubio ◽  
Tae Ho Kim

Gas foil bearings (GFBs) satisfy the requirements for oil-free turbomachinery, i.e. simple construction and ensuring low drag friction and reliable high speed operation. However, GFBs have a limited load capacity and minimal damping, as well as frequency and amplitude dependent stiffness and damping characteristics. This paper provides experimental results of the rotordynamic performance of a small rotor supported on two bump-type GFBs of length and diameter equal to 38.10 mm. Coast down rotor responses from 25 krpm to rest are recorded for various imbalance conditions and increasing air feed pressures. The peak amplitudes of rotor synchronous motion at the system critical speed are not proportional to the imbalance introduced. Furthermore, for the largest imbalance, the test system shows subsynchronous motions from 20.5 krpm to 15 krpm with a whirl frequency at ∼ 50% of shaft speed. Rotor imbalance exacerbates the severity of subsynchronous motions, thus denoting a forced nonlinearity in the GFBs. The rotor dynamic analysis with calculated GFB force coefficients predicts a critical speed at 8.5 krpm, as in the experiments; and importantly enough, unstable operation in the same speed range as the test results for the largest imbalance. Predicted imbalance responses do not agree with the rotor measurements while crossing the critical speed, except for the lowest imbalance case. Gas pressurization through the bearings’ side ameliorates rotor subsynchronous motions and reduces the peak amplitudes at the critical speed. Post-test inspection reveal wear spots on the top foils and rotor surface.


Author(s):  
Bok Seong Choe ◽  
Tae Ho Kim ◽  
Chang Ho Kim ◽  
Yong Bok Lee

This paper presents the dynamic behavior of a 225 kW class (300 HP), 60,000 rpm, permanent magnet synchronous (PMS) motor–generator system supported on gas foil bearings (GFBs). The rotor of a 225 kW PMS motor is supported by two identical gas foil journal bearings (GFJBs) and one pair of gas foil thrust bearings (GFTBs). The total weight and axial length of the coupled rotors are 272 N and 1042 mm, respectively. During the speed-up test to 60,000 rpm, unexpected large subsynchronous rotor motions appear at around 120–130 Hz above 35,040 rpm. After disassembling the motor, an inspection of the top foils of the GFJBs reveals significant rotor rubbing. Thus, the GFJBs are redesigned to have a smaller load capacity by reducing their axial length to 45 mm. In addition, three 50 μm thick shims are installed in the GFJBs at 120 deg intervals for reducing the swirl speed of air and producing bearing preloads. The modification delays the onset speed of subsynchronous motions to 43,200 rpm and decreases the amplitude of the subsynchronous motions from 20 to 15 μm. These results indicate that the modification improves the stability margin of the high-speed rotor system with increasing stiffness and damping. In addition, the logarithmic decrement trends are in good agreement with the test results.


Author(s):  
Daejong Kim ◽  
Prajwal Shetty ◽  
Donghyun Lee

Air foil bearings (AFB’s) are widely used in small to midsized turbomachinery. They are simple in construction, offer very low drag friction, and have very high reliability at high speed operations. This paper presents experimental imbalance response of a 4.84 kg rigid rotor (operating below bending critical speed) supported by two hybrid air foil bearings with 50 mm in diameter. The concept of “hybrid” in this paper utilizes the hydrostatic augmentation of the load capacity during the start up and shut down. The hybrid air foil bearings were designed with three top foils for enhanced stability. Imbalance responses in cylindrical mode are presented up to 44,000rpm with different supply pressures. As the supply pressure is increased from 2.67 to 4 bar, the bearing stiffness increases slightly, resulting in slightly larger vibration (and reduced damping ratio) during the trans-critical speed operation. Hydrodynamic instability was observed with whirl frequency ratios of about 0.17∼0.2 depending on the supply pressures. Tests were also conducted to investigate the effect of supply pressure on the rotordynamic stability. The test results show that the hybrid operation is very effective to suppress the subsynchronous vibrations at high speeds.


Author(s):  
Bok Seong Choe ◽  
Tae Ho Kim ◽  
Chang Ho Kim ◽  
Yong Bok Lee

This paper presents the dynamic behavior of a 225 kW class (300 HP), 60,000 rpm, permanent magnet synchronous (PMS) motor-generator system supported on gas foil bearings (GFBs). The rotor of a 225 kW PMS motor is supported by two identical gas foil journal bearings (GFJBs) and one pair of gas foil thrust bearings (GFTBs). The total weight and axial length of the coupled rotors are 272 N and 1,042 mm, respectively. During the speed-up test to 60,000 rpm, unexpected large subsynchronous rotor motions appear at around 120–130 Hz above 35,040 rpm. After disassembling the motor, an inspection of the top foils of the GFJBs reveals significant rotor rubbing. Thus, the GFJBs are redesigned to have a smaller load capacity by reducing their axial length to 45 mm. In addition, three 50 μm thick shims are installed in the GFJBs at 120° intervals for reducing the swirl speed of air and producing bearing preloads. The modification delays the onset speed of subsynchronous motions to 43,200 rpm and decreases the amplitude of the subsynchronous motions from 20 to 15 μm. These results indicate that the modification improves the stability margin of the high-speed rotor system with increasing stiffness and damping. In addition, the logarithmic decrement trends are in good agreement with the test results.


Author(s):  
Daejong Kim ◽  
Brian Nicholson ◽  
Lewis Rosado ◽  
Garry Givan

Foil bearings are one type of hydrodynamic air/gas bearings but with a compliant bearing surface supported by structural material that provides stiffness and damping to the bearing. The hybrid foil bearing (HFB) in this paper is a combination of a traditional hydrodynamic foil bearing with externally-pressurized air/gas supply system to enhance load capacity during the start and to improve thermal stability of the bearing. The HFB is more suitable for relatively large and heavy rotors where rotor weight is comparable to the load capacity of the bearing at full speed and extra air/gas supply system is not a major added cost. With 4,448N∼22,240N thrust class turbine aircraft engines in mind, the test rotor is supported by HFB in one end and duplex rolling element bearings in the other end. This paper presents experimental work on HFB with diameter of 102mm performed at the US Air force Research Laboratory. Experimental works include: measurement of impulse response of the bearing to the external load corresponding to rotor’s lateral acceleration of 5.55g, forced response to external subsynchronous excitation, and high speed imbalance response. A non-linear rotordynamic simulation model was also applied to predict the impulse response and forced subsynchronous response. The simulation results agree well with experimental results. Based on the experimental results and subsequent simulations, an improved HFB design is also suggested for higher impulse load capability up to 10g and rotordynamics stability up to 30,000rpm under subsynchronous excitation.


Author(s):  
Sadanand Kulkarni ◽  
Soumendu Jana

High-speed rotating system development has drawn considerable attention of the researchers, in the recent past. Foil bearings are one of the major contenders for such applications, particularly for high speed and low load rotating systems. In foil bearings, process fluid or air is used as the working medium and no additional lubricant is required. It is known from the published literature that the load capacity of foil bearings depend on the operating speed, viscosity of the medium, clearance, and stiffness of the foil apart from the geometric dimensions of the bearing. In case of foil bearing with given dimensions, clearance governs the magnitude of pressure developed, whereas stiffness dictates the change in radial clearance under the generated pressure. This article deals with the effect of stiffness, clearance, and its interaction on the bump foil bearings load-carrying capacity. For this study, four sets of foil bearings of the same geometry with two levels of stiffness and clearance values are fabricated. Experiments are carried out following two factor-two level factorial design approach under constant load and in each case, the lift-off speed is measured. The experimental output is analyzed using statistical techniques to evaluate the influence of parameters under consideration. The results indicate that clearance has the maximum influence on the lift-off speed/ load-carrying capacity, followed by interaction effect and stiffness. A regression model is developed based on the experimental values and model is validated using error analysis technique.


2011 ◽  
Vol 368-373 ◽  
pp. 1392-1395 ◽  
Author(s):  
Quan Zhou ◽  
Yu Hou ◽  
Ru Gang Chen

Because of the low power loss and high stability, foil bearings are suitable lubrication components for high speed rotational systems. At present, the foil bearings used in actual applications almost have complicated structure and are hard to manufacture. In this paper, two kinds of foil thrust bearings with simple structure are presented. Configurations of these two foil thrust bearings are introduced; meanwhile, the load capacity and running stability are also tested in a high speed micro turbine. It is shown that viscoelastic supported foil thrust bearing has higher load capacity and hemisphere convex dots supported foil thrust bearing is more stable in high speed operational condition.


Author(s):  
Crystal A. Heshmat ◽  
Hooshang Heshmat ◽  
Mark J. Valco ◽  
Kevin C. Radil ◽  
Christopher Della Corte

This paper describes an oil-free, 150 Hp turbocharger that was successfully operated with compliant foil bearings in a range of pitch and roll angles, including vertical operation, thereby demonstrating its viability for aircraft applications. On a gas test stand the turbocharger was operated to 120,000 rpm, under extreme conditions. In addition, the compliant foil bearing-supported turbocharger successfully tolerated shock and vibration of 40 g. Advanced technologies have been applied to the second generation of this turbocharger, shown in Figure 1, including self acting, compliant foil hydrodynamic air bearings with advanced coatings capable, of operation above 815 °C (1500°F). Journal foil bearings with maximum load capacity up to 670 kPa (97 psi) were used in conjunction with thrust foil bearings capable of maximum loads to 570 kPa (83 psi). Bearing component development tests demonstrated 30,000 start stop cycles at 815 °C (1500°F) with a newly developed, solid lubricant coating, KOROLON™. KOROLON™ exhibits a coefficient of friction of less than 0.1 at a wide range of temperatures. Current-designed foil bearings with KOROLON™ have immensely decreased turbolag, allowing acceleration from rest to over 100,000 rpm in less than 2 seconds. Advanced bearing stiffness maintained rotor total axial end-to-end motion within 100 microns (0.004 inch). Total radial static and dynamic motion was controlled within 25 microns (0.001 inch). Development of this high speed turbomachine included bearing and solid lubricant component development tests, rotor-bearing dynamic simulator qualification and gas stand tests of the assembled turbocharger. Gas stand and simulator test results revealed stable bearing temperatures, low rotor vibrations, good shock tolerance and the ability of the rotor bearing system to sustain overspeed conditions beyond 120,000 rpm. This combination of component and integrated rotor-bearing system technology addresses many of the issues associated with application of compliant foil bearings to industrial compressors, blowers, and gas turbine engines, overcoming many of the inherently show-stopping and debilitating features of rolling element bearings, i.e., speed and temperature limitations.


Author(s):  
E. E. Swanson ◽  
H. Heshmat ◽  
J. S. Shin

The demand for high power density, reliable, low maintenance, oil-free turbomachinery imposes significant demands on the bearing system. The full benefits of high speed, permanent magnet driven machines, for example are realized at speeds exceeding the capabilities of rolling element bearings. The high speeds, and a desire for oil-free operation also make conventional liquid lubricated bearings an undesirable alternative. The modern, oil-free foil bearing provides an excellent alternative, providing low power loss, adequate damping for supercritical operation, tolerance of elevated temperatures and long life. In this paper, the application of modern foil bearings to a high speed, oil-free turbo-compressor is discussed. In this demanding application, foil bearings support a 24 pound, multi-component rotor operating at 70,000 RPM with a bending critical speed of approximately 43,000 RPM. Stable and reliable operation over the full speed range has been demonstrated. This application also required low bearing start-up torque for compatibility with the constant torque characteristic of the integral permanent magnet motor. This work discusses the rotor bearing system design, the development program approach, and the results of testing to date. Data for both a turbine driven configuration, as well as a high speed integral motor driven configuration are presented.


1970 ◽  
Vol 92 (4) ◽  
pp. 650-659 ◽  
Author(s):  
L. Licht

A high-speed rotor, supported by gas-lubricated foil bearings, is free from self-excited whirl and displays no loss of load capacity when vibrated at frequency equal half the rotational speed [1]. It is demonstrated here that in addition to tolerance of geometrical imperfections, misalignment, and foreign particles [3, 4], the foil bearing performs well at elevated temperatures and accommodates appreciable temperature gradients. The foil bearing is endowed with superior wipe-wear characteristics, and the flexibility of the foil accounts not only for the stability of the foil bearing but also for its forgiveness with respect to distortion, contamination, and contact.


Sign in / Sign up

Export Citation Format

Share Document