scholarly journals A Lumped-Element Decoupling and Matching Network for a Four-Element Mobile Handset MIMO Antenna

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Riku Kormilainen ◽  
Rasmus Luomaniemi ◽  
Anu Lehtovuori ◽  
Ville Viikari

This paper presents the first realization of a lumped-element decoupling and matching network (DMN) for more than two-element mobile MIMO arrays. The realization of the DMN is based on an existing method, which is improved in terms of bandwidth and the number of network elements. The array is designed to operate in the 2.6–2.7 GHz LTE band. The DMN is applied to a four-element MIMO antenna array located on one side of the mobile phone chassis. The array initially has a strong coupling of −3 dB, which is improved to −7 dB with the DMN. In other words, this denotes a reduction of 30 percentage points in coupled power. The DMN also improves the total efficiency by 21 percentage points at best.

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3062
Author(s):  
Jalal Khan ◽  
Sadiq Ullah ◽  
Farooq A. Tahir ◽  
Faisel Tubbal ◽  
Raad Raad

This paper presents a novel antenna with its array and MIMO configuration for the 5G sub-6 GHz applications. The proposed antenna element operates at the central frequency of 5.57 GHz dedicated for Sub-6 GHz 5G communication applications. The antenna element holds a circular-shaped radiating portion with an inner-circular slot, plus a rectangular slot at its right edge to make the proposed design resonate at the desired frequency band. The RT5880 substrate is used with a thickness of 0.787 mm, and the low-loss tangent of 0.0009. To achieve a desired gain of 12 dB, a four-element array configuration is adopted, which improved a bore side gain to 12.4 dB from 6.66 dB. Then, the two-port configuration is adopted such that the isolation achieved between them is more than −30 dB. The total efficiency of the proposed antenna array is observed to be more than 80% within the operating bandwidth. Moreover, the Specific Absorption Rate (SAR) analysis is also presented for the proposed MIMO configuration, obeying the standard value (i.e., <2 W/kg for any 10 g of tissue). The measured results are in good agreement with the simulated results. All the simulations of the proposed design are performed in the CST MWS software.


Author(s):  
Mahsa Zabetiakmal ◽  
Gholamreza Moradi ◽  
Mojtaba Sohrabi ◽  
Kambiz Jamshidi ◽  
Dirk Plettemeir

Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Lingsheng Yang ◽  
Ming Ji ◽  
Biyu Cheng ◽  
Bo Ni

AbstractIn this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured –10 dB impedance bandwidth is 3.2–3.9 GHz which can cover the LTE bands 42 and 43 (3.4–3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542 ◽  
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Jing Cai ◽  
Han Li ◽  
Gui Liu

A quad-port antenna array operating in 3.5 GHz band (3.4–3.6 GHz) and 5 GHz band (4.8–5 GHz) for fifth-generation (5G) smartphone applications is presented in this paper. The single antenna element consists of an L-shaped strip, a parasitic rectangle strip, and a modified Z-shaped strip. To reserve space for 2G/3G/4G antennas, the quad-port antenna array is printed along the two long frames of the smartphone. The evolution design and the analysis of the optimal parameters of a single antenna element are derived to investigate the principle of the antenna. The prototype of the presented antenna is tested and the measured results agree well with the simulation. The measured total efficiency is better than 70% and the isolation is larger than 16.5 dB.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 344-354 ◽  
Author(s):  
Yixin Li ◽  
Chow-Yen-Desmond Sim ◽  
Yong Luo ◽  
Guangli Yang

2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Sign in / Sign up

Export Citation Format

Share Document