scholarly journals A Quad-Port Dual-Band MIMO Antenna Array for 5G Smartphone Applications

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542 ◽  
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Jing Cai ◽  
Han Li ◽  
Gui Liu

A quad-port antenna array operating in 3.5 GHz band (3.4–3.6 GHz) and 5 GHz band (4.8–5 GHz) for fifth-generation (5G) smartphone applications is presented in this paper. The single antenna element consists of an L-shaped strip, a parasitic rectangle strip, and a modified Z-shaped strip. To reserve space for 2G/3G/4G antennas, the quad-port antenna array is printed along the two long frames of the smartphone. The evolution design and the analysis of the optimal parameters of a single antenna element are derived to investigate the principle of the antenna. The prototype of the presented antenna is tested and the measured results agree well with the simulation. The measured total efficiency is better than 70% and the isolation is larger than 16.5 dB.

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 136
Author(s):  
Jianlin Huang ◽  
Zhuoni Chen ◽  
Qibo Cai ◽  
Tian Hong Loh ◽  
Gui Liu

A multiple-input-multiple-output (MIMO) antenna array for triple-band 5G metal-frame smartphone applications is proposed in this paper. Each single antenna element consists of an S-shaped feeding strip and an L-shaped radiation strip on the metal frame. The dimension of the antenna element is only 6.5 mm × 7 mm (0.076 λ0 × 0.082 λ0, λ0 is the free-space wavelength at the frequency of 3.5 GHz). The −6 dB impedance bandwidth of the proposed eight-antenna array can cover 3.3–3.8 GHz, 4.8–5 GHz, and 5.15–5.925 GHz. The evolution design and the analysis of the optimal parameters for a single antenna element are derived to investigate the principle of the antenna. The measured total efficiency is larger than 70%. The measured isolation is better than 13 dB. The measurements of the prototype agree well with the simulation results.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 489
Author(s):  
Jianlin Huang ◽  
Guiting Dong ◽  
Qibo Cai ◽  
Zhizhou Chen ◽  
Limin Li ◽  
...  

This paper presents a dual-band four-element multiple-input-multiple-output (MIMO) array for the fifth generation (5G) mobile communication. The proposed antenna is composed of an open-loop ring resonator feeding element and a T-shaped radiating element. The utilization of the open-loop ring resonator not only reduces the size of the antenna element, but also provides positive cross-coupling. The dimension of a single antenna element is 14.9 mm × 7 mm (0.27λ × 0.13λ, where λ is the wavelength of 5.5 GHz). The MIMO antenna exhibits a dual-band feature from 3.3 to 3.84 GHz and 4.61 to 5.91 GHz, which can cover 5G New Radio N78 (3.3–3.8 GHz), 5G China Band N79 (4.8–5 GHz), and IEEE 802.11 ac (5.15–5.35 GHz, 5.725–5.85 GHz). The measured total efficiency and isolation are better than 70% and 15 dB, respectively. The calculated envelope correlation coefficient (ECC) is less than 0.02. The measured results are in good agreement with the simulated results.


2021 ◽  
Vol 35 (11) ◽  
pp. 1314-1315
Author(s):  
Guobo Wei ◽  
Quanyuan Feng

A side-frame dual-band multi-input multi-output (MIMO) antenna system for fifth-generation (5G) mobile communication in smartphone applications is presented, operating in 3.5 GHz band (3400-3600 MHz) and 5 GHz band (4800-5000 MHz). The proposed four-element antenna array is placed at four corners of the circuit board and printed on the side edge frame. The height of the structure is only 4.1 mm, which is compatible for ultra-thin full screen smartphones. According to the verification of HFSS and CST, ideal impedance matching bandwidths (superior to 10dB) and excellent isolations (superior to 18 dB) are obtained over the 3.5 GHz band and 5 GHz band, with peak gain of 6.18 dB and 4.9 dB, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3062
Author(s):  
Jalal Khan ◽  
Sadiq Ullah ◽  
Farooq A. Tahir ◽  
Faisel Tubbal ◽  
Raad Raad

This paper presents a novel antenna with its array and MIMO configuration for the 5G sub-6 GHz applications. The proposed antenna element operates at the central frequency of 5.57 GHz dedicated for Sub-6 GHz 5G communication applications. The antenna element holds a circular-shaped radiating portion with an inner-circular slot, plus a rectangular slot at its right edge to make the proposed design resonate at the desired frequency band. The RT5880 substrate is used with a thickness of 0.787 mm, and the low-loss tangent of 0.0009. To achieve a desired gain of 12 dB, a four-element array configuration is adopted, which improved a bore side gain to 12.4 dB from 6.66 dB. Then, the two-port configuration is adopted such that the isolation achieved between them is more than −30 dB. The total efficiency of the proposed antenna array is observed to be more than 80% within the operating bandwidth. Moreover, the Specific Absorption Rate (SAR) analysis is also presented for the proposed MIMO configuration, obeying the standard value (i.e., <2 W/kg for any 10 g of tissue). The measured results are in good agreement with the simulated results. All the simulations of the proposed design are performed in the CST MWS software.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ahmad Salamin ◽  
Niamat Hussain

Abstract In this work, a unique wideband multiple-input multiple-output (MIMO) antenna for fifth-generation (5G) applications is introduced. Each antenna element in the MIMO system is formed using a modified parasitic ring. To improve the performance of the antenna, a rectangular-shaped region is etched into the opposite side of each element in the ground plane. The proposed MIMO antenna is designed on a commercially available FR-4 substrate, having total dimensions of 100 × 60 × 0.8 mm3. Most interestingly, the antenna has a measured bandwidth from 2.60 to 5.97 GHz. This will effectively encompass the most predicted feasible bands for futuristic 5G communications, including 5G new radio frequency bands (N77/N78/N79) and long-term evolution (LTE) 46 band. The performance of a single antenna is evaluated in terms of S-parameters, gain, radiation patterns and efficiency. The performance of the MIMO system is also evaluated in terms of the envelope correlation coefficient (ECC) and diversity gain (DG). The designed antenna is fabricated, and the simulation results are verified practically. Good agreement is reached between simulation and measurement results. The proposed design is a good choice for 5G applications that require wideband capabilities.


Author(s):  
Atta Ullah ◽  
Naser Ojaroudi Parchin ◽  
Mohamed Abdul-Al ◽  
Henrique M. D. Santos ◽  
Chan Hwang See ◽  
...  

Author(s):  
Hussain Al-Rizzo ◽  
Ayman A. Isaac ◽  
Sulaiman Z. Tariq ◽  
Samer Yahya

This chapter introduces a novel design concept to reduce mutual coupling among closely-spaced antenna elements of a MIMO array. This design concept significantly reduces the complexity of traditional/existing design approaches such as metamaterials, defected ground plane structures, soft electromagnetic surfaces, parasitic elements, matching and decoupling networks using a simple, yet a novel design alternative. The approach is based on a planar single decoupling element, consisting of a rectangular metallic ring resonator printed on one face of an ungrounded substrate. The decoupling structure surrounds a two-element vertical monopole antenna array fed by a coplanar waveguide structure. The design is shown both by simulations and measurements to reduce the mutual coupling by at least 20 dB, maintain the impedance bandwidth over which S11, is less than −10 dB, and reduce the envelope correlation coefficient to below 0.001. The boresight of the far-field radiation patterns of the two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm (λo/16), where λo is the free-space wavelength at 2.45 GHz, is shown to be orthogonal and inclined by 45° with respect to the horizontal (azimuthal) plane while maintaining the shape of the isolated single antenna element.


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Sign in / Sign up

Export Citation Format

Share Document