scholarly journals Security Cryptanalysis of NUX for the Internet of Things

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yu Liu ◽  
Xiaolei Liu ◽  
Yanmin Zhao

In order to adopt the restricted environment, such as radio frequency identification technology or sensor networking, which are the important components of the Internet of Things, lightweight block ciphers are designed. NUX is a 31-round iterative ultralightweight cipher proposed by Bansod et al. In this paper, we examine the resistance of NUX to differential and linear analysis and search for 1~31-round differential characteristics and linear approximations. In design specification, authors claimed that 25-round NUX is resistant to differential and linear attack. However, we can successfully perform 29-round differential attack on NUX with the 22-round differential characteristic found in this paper, which is 4 rounds more than the limitation given by authors. Furthermore, we present the key recovery attack on 22-round NUX using a 19-round linear approximation determined in this paper. Besides, distinguishing attack, whose distinguisher is built utilizing the property of differential propagation through NUX, is implemented on full NUX with data complexity 8.

2018 ◽  
Vol 3 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Ernest Ezema ◽  
Azizol Abdullah ◽  
Nor Fazlida Binti Mohd

The concept of the Internet of Things (IoT) has evolved over time. The introduction of the Internet of Things and Services into the manufacturing environment has ushered in a fourth industrial revolution: Industry 4.0. It is no doubt that the world is undergoing constant transformations that somehow change the trajectory and history of humanity. We can illustrate this with the first and second industrial revolutions and the information revolution. IoT is a paradigm based on the internet that comprises many interconnected technologies like RFID (Radio Frequency Identification) and WSAN (Wireless Sensor and Actor Networks) to exchange information. The current needs for better control, monitoring and management in many areas, and the ongoing research in this field, have originated the appearance and creation of multiple systems like smart-home, smart-city and smart-grid. The IoT services can have centralized or distributed architecture. The centralized approach provides is where central entities acquire, process, and provide information while the distributed architectures, is where entities at the edge of the network exchange information and collaborate with each other in a dynamic way. To understand the two approaches, it is necessary to know its advantages and disadvantages especially in terms of security and privacy issues. This paper shows that the distributed approach has various challenges that need to be solved. But also, various interesting properties and strengths. In this paper we present the main research challenges and the existing solutions in the field of IoT security, identifying open issues, the industrial revolution and suggesting some hints for future research.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2021 ◽  
pp. 1-10
Author(s):  
Jintao Tang ◽  
Lvqing Yang ◽  
Jiangsheng Zhao ◽  
Yishu Qiu ◽  
Yihui Deng

With the development of the Internet of Things and Radio Frequency Identification (RFID), indoor positioning technology as an important part of positioning technology, has been attracting much attention in recent years. In order to solve the problems of low precision, high cost and signal collision between readers, a new indoor positioning algorithm based on a single RFID reader combined with a Double-order Gated Recurrent Unit (GRU) are proposed in this paper. Firstly, the reader is moved along the specified direction to collect the sequential tag data. Then, the tag’s coordinate is taken as the target value to train models and compare them with existing algorithms. Finally, the best Gated Recurrent Unit positioning model is used to estimate the position of the tags. Experiment results show that the proposed algorithm can effectively improve positioning accuracy, reduce the number of readers, cut down the cost and eliminate the collisions of reader signals.


2021 ◽  
Author(s):  
Mohamad Oubai Al-Rejleh

The Internet of Things (IoT) is a revolutionary concept that emerged in the late 21st century, whereby everyday objects such as household items, cars, and wearables, equipped with sensors and (Radio Frequency Identification) RFID chips, can communicate with the internet and to their physical surroundings. These chips allow the connected items to share information, and allow the user to collect information about his/her “quantified self”, measuring personal data such as habits of usage, lifestyle, and location through internet networks. IoT enabled devices are designed to collect, store, share, and analyze of highly personal data ubiquitously and in real time. However, with this new affordance of connectivity, comes a potential loss of privacy for users, as ever increasing sets of personal data are collected and tracked. As such, there is a pressing need for privacy considerations to be embedded within the early stages of design of connected devices and networks.


Crimen ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 255-271
Author(s):  
Sanja Milivojević ◽  
Elizabeth Radulski

The Internet of Things (IoT) is poised to revolutionise the way we live and communicate, and the manner in which we engage with our social and natural world. In the IoT, objects such as household items, vending machines and cars have the ability to sense and share data with other things, via wireless, Bluetooth, or Radio Frequency IDentification (RFID) technology. "Smart things" have the capability to control their performance, as well as our experiences and decisions. In this exploratory paper, we overview recent developments in the IoT technology, and their relevance for criminology. Our aim is to partially fill the gap in the literature, by flagging emerging issues criminologists and social scientists ought to engage with in the future. The focus is exclusively on the IoT while other advances, such as facial recognition technology, are only lightly touched upon. This paper, thus, serves as a starting point in the conversation, as we invite scholars to join us in forecasting-if not preventing-the unwanted consequences of the "future Internet".


2022 ◽  
pp. 168-180
Author(s):  
Sasikumar Gurumoorthy ◽  
L. Venkateswara Reddy ◽  
Sudhakaran Periakaruppan

Art colonnades and museums all over the world are the first option for individuals to visit for the enhancement of the cultural life of people. To ensure their safety, museums have established numerous cultural security measures. Traditional strategies do not obstruct their pace entirely. They only use a computer in the museum to check individuals at the entrance and exit. Therefore, the authors proposed a gallery anti-stealing device created on the internet-of-things (IoT) technology that ensures security through passive readers/writers of RFID. Radio frequency identification (RFID) remains a system that practices isolated data storing and recovery and offers object tracking with a unique identity code. The system then sends sound and light warning information, while the photographic camera structure is triggered to capture a picture at the same time. The recognition of the accuracy in the hardware component of the device can be additionally enhanced by the use of this technology to increase the safety of museum equipment.


Author(s):  
Maurice Dawson

Secure computing is essential as environments continue to become intertwined and hyperconnected. As the Internet of Things (IoT), Web of Things (WoT), and the Internet of Everything (IoE) dominate the landscape of technological platforms, protection these complicated networks is important. The everyday person who wishes to have more devices that allow the ability to be connected needs to be aware of what threats they could be potentially exposing themselves to. Additionally, for the unknowing consumer of everyday products needs to be aware of what it means to have sensors, Radio Frequency IDentification (RFID), Bluetooth, and WiFi enabled products. This submission explores how Availability, Integrity, and Confidentiality (AIC) can be applied to IoT, WoT, and IoE with consideration for the application of these architectures in the defense sector.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 987
Author(s):  
Luciano Tarricone ◽  
Jasmin Grosinger

Radio frequency identification (RFID) is one of the crucial enabling technologies for the Internet of Things (IoT). This is leading to a continuous augmentation of RFID technologies, in terms of sensing capabilities, energetic autonomy, usability, and cost affordability, and this special issue proposes an overview on such a challenging scenario. The proposed results, in terms of cost reduction, miniaturization, and compatibility with complex systems and technologies, as well as the identification of the relevant criticalities, also pave the way to future steps being taken that go beyond the current IoT.


2013 ◽  
Vol 469 ◽  
pp. 322-325 ◽  
Author(s):  
Zhi Qiang Gao ◽  
Xiu Ping Zhao

The Internet of Things technology used in agricultural products, such as food safety traceability management is taking the technological advantages of the Internet of Things RFID (Radio Frequency IDentification) is non-contact automatic fast read and write data encryption, in order to achieve a unified management and efficient flow of work in coordination.This thesis reports a production method of conductive nanosilver jet ink. The ink can be used to directly print RFID antenna coil. In the method using silver nitrate as silver source, hydrazine hydrate as a reducing agent, polyvinyl pyrrolidone as a protective agent. Obtain the dispersion of silver nanoparticles through chemical reduction reaction. The dispersion was purified and used inkjet printer into a graphic on glossy photo paper, after 180 °C sintered for 15 minutes with good conductivity, RFID antennas to meet requirements.


2012 ◽  
Vol 263-266 ◽  
pp. 2834-2837
Author(s):  
Lei Sang ◽  
Duo Long

The Internet of things covers many aspects such as the electronic tag reader research, the Internet of things software research and the e-commerce research, etc. The SAVANT middleware is one of the key issues of the study. Based on electronic product code, radio frequency identification technology and system description middleware technology, this paper focuses on research and design of the Internet of things middleware system to solve the problem of data acquisition.


Sign in / Sign up

Export Citation Format

Share Document