scholarly journals Oxidative DNA Damage Signalling in Neural Stem Cells in Alzheimer’s Disease

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Marcelina Kieroń ◽  
Cezary Żekanowski ◽  
Anna Falk ◽  
Michalina Wężyk

The main pathological symptoms of Alzheimer’s disease (AD) are β-amyloid (Aβ) lesions and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. Unfortunately, existing symptomatic therapies targeting Aβ and tau remain ineffective. In addition to these pathogenic factors, oxidative DNA damage is one of the major threats to newborn neurons. It is necessary to consider in detail what causes neurons to be extremely susceptible to oxidative damage, especially in the early stages of development. Accordingly, the regulation of redox status is crucial for the functioning of neural stem cells (NSCs). The redox-dependent balance, of NSC proliferation and differentiation and thus the neurogenesis process, is controlled by a series of signalling pathways. One of the most important signalling pathways activated after oxidative stress is the DNA damage response (DDR). Unfortunately, our understanding of adult neurogenesis in AD is still limited due to the research material used (animal models or post-mortem tissue), providing inconsistent data. Now, thanks to the advances in cellular reprogramming providing patient NSCs, it is possible to fill this gap, which becomes urgent in the light of the potential of their therapeutic use. Therefore, a decent review of redox signalling in NSCs under physiological and pathological conditions is required. At this moment, we attempt to integrate knowledge on the influence of oxidative stress and DDR signalling in NSCs on adult neurogenesis in Alzheimer’s disease.

US Neurology ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 12
Author(s):  
Michael W Marlatt ◽  
Jeroen JM Hoozemans ◽  
Rob Veerhuis ◽  
Paul J Lucassen ◽  
◽  
...  

The human brain produces new neurons that mediate hippocampal plasticity but also have a potential role in hippocampal-related disorders, such as Alzheimer’s disease and dementia. Factors such as stress and aging that reduce adult neurogenesis also serve as independent risk factors for Alzheimer’s disease. Causality between loss of neurogenesis and hippocampal dysfunction has not been established; however, neurogenesis is an attractive research avenue for therapy since it is readily modifiable. Activities such as running and enrichment increase the proliferation of neural stem cells and survival of nascent neuroblasts. Adult neurogenesis may alternatively reflect capacity to overcome age-dependent insults and neurodegeneration in the hippocampus. This collectively indicates that stimulation of endogenous cells or transplantation of neural stem cells are potential pathways reversing the behavioral changes associated with neurodegenerative disorders by augmenting structural plasticity of the hippocampus. Continued research in this area and in appropriate animal models of disease is critical for evaluating whether neurogenesis-based therapeutic strategies will have the potential to aid those with degenerative conditions.


2016 ◽  
Vol 5 (3) ◽  
pp. 379-391 ◽  
Author(s):  
Lisa M. McGinley ◽  
Erika Sims ◽  
J. Simon Lunn ◽  
Osama N. Kashlan ◽  
Kevin S. Chen ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Giulia Sita ◽  
Patrizia Hrelia ◽  
Andrea Tarozzi ◽  
Fabiana Morroni

ATP-binding cassette (ABC) transporters, in particular P-glycoprotein (encoded by ABCB1), are important and selective elements of the blood-brain barrier (BBB), and they actively contribute to brain homeostasis. Changes in ABCB1 expression and/or function at the BBB may not only alter the expression and function of other molecules at the BBB but also affect brain environment. Over the last decade, a number of reports have shown that ABCB1 actively mediates the transport of beta amyloid (Aβ) peptide. This finding has opened up an entirely new line of research in the field of Alzheimer’s disease (AD). Indeed, despite intense research efforts, AD remains an unsolved pathology and effective therapies are still unavailable. Here, we review the crucial role of ABCB1 in the Aβtransport and how oxidative stress may interfere with this process. A detailed understanding of ABCB1 regulation can provide the basis for improved neuroprotection in AD and also enhanced therapeutic drug delivery to the brain.


Sign in / Sign up

Export Citation Format

Share Document