scholarly journals Dynamic Analysis of Rectangular Plate Stiffened by Any Number of Beams with Different Lengths and Orientations

2019 ◽  
Vol 2019 ◽  
pp. 1-22
Author(s):  
Yuan Cao ◽  
Rui Zhong ◽  
Dong Shao ◽  
Qingshan Wang ◽  
Xianlei Guan

The present work is concerned with dynamic characteristics of beam-stiffened rectangular plate by an improved Fourier series method (IFSM), including mobility characteristics, structural intensity, and transient response. The artificial coupling spring technology is introduced to establish the clamped or elastic connections at the interface between the plate and beams. According to IFSM, the displacement field of the plate and the stiffening beams are expressed as a combination of the Fourier cosine series and its auxiliary functions. Then, the Rayleigh–Ritz method is applied to solve the unknown Fourier coefficients, which determines the dynamic characteristics of the coupled structure. The Newmark method is adopted to obtain the transient response of the coupled structure, where the Rayleigh damping is taken into consideration. The rapid convergence of the current method is shown, and good agreement between the predicted results and FEM results is also revealed. On this basis, the effects of the factors related to the stiffening beam (including the length, orientations, and arrangement spacing of beams) and elastic parameters, as well as damping coefficients on the dynamic characteristics of the stiffened plate are investigated.

2016 ◽  
Vol 16 (10) ◽  
pp. 1550069 ◽  
Author(s):  
Lingzhi Wang ◽  
Zhitao Yan ◽  
Zhengliang Li ◽  
Zhimiao Yan

In engineering practice, a massive machine may be placed on a plate supported by beams considered as elastic boundary conditions. The vibration of the plate due to the periodic excitation of the massive machine will cause noises or damages to the building in which the machine is housed. An analytical approach for the vibration analysis of a rectangular plate carrying a massive machine with uniform elastic supports is presented. The machine is simplified as a distributed mass. The transverse plate displacement is determined by the superposition of a two-dimensional (2D) Fourier cosine series and several supplementary functions. All the unknown Fourier coefficients are calculated directly from the Rayleigh–Ritz formulation. To validate the present approach, several numerical examples with classical boundary conditions are presented. The results reveal good agreement between the analytical results and those based on the finite element analysis (ANSYS). The effects of the plate size, location of the machine, and support stiffness on the modal, and transient response of the plate are investigated. From the results it is found that the transient displacement amplitude of the plate decreases almost linearly as the thickness increases, it increases nonlinearly along with the increase in the support stiffness, and that the optimal position for deploying the transformer is the center of the plate.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Fuzhen Pang ◽  
Haichao Li ◽  
Yuan Du ◽  
Shuo Li ◽  
Hailong Chen ◽  
...  

A series solution for the transverse vibration of Mindlin rectangular plates with elastic point supports around the edges is studied. The series solution for the problem is obtained using improved Fourier series method, in which the vibration displacements and the cross-sectional rotations of the midplane are represented by a double Fourier cosine series and four supplementary functions. The supplementary functions are expressed as the combination of trigonometric functions and a single cosine series expansion and are introduced to remove the potential discontinuities associated with the original admissible functions along the edges when they are viewed as periodic functions defined over the entire x-y plane. This series solution is approximately accurate in the sense that it explicitly satisfies, to any specified accuracy, both the governing equations and the boundary conditions. The convergence, accuracy, stability, and efficiency of the proposed method have been examined through a series of numerical examples. Some numerical examples about the nondimensional frequency and mode shapes of Mindlin rectangular plates with different point-supported edge conditions are given.


2020 ◽  
Vol 20 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Mehdi Bozorgi

In this paper, the simple yet effective mode-matching technique is utilized to compute TE-backscattering from a 2D filled rectangular groove in an infinite perfect electric conductor (PEC). The tangential magnetic fields inside and outside of the groove are represented as the sums of infinite series of cosine harmonics (half-range Fourier cosine series). By applying the continuity of the tangential magnetic field, these modes are matched on the groove to obtain the series coefficients by solving a system of linear equations. For this purpose, some oscillatory logarithmic singular integrals involving Hankel and trigonometric functions are solved numerically, starting by removing the logarithmic singularity via integration by parts. In the following, the new well-behaved highly oscillatory integrals are computed using efficient methods, and several comparisons are made to demonstrate the validity and ability of the presented procedure.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S W E Baalman ◽  
F E Schroevers ◽  
A Oakley ◽  
L A Ramos ◽  
R R Lopes ◽  
...  

Abstract Background The electrocardiogram (ECG) is commonly used, but most recent rhythm discrimination algorithms still lack both specificity and sensitivity. Deep learning techniques have shown promising results in the classification of physiological signals like ECGs. Purpose To develop and test a deep learning (DL) model to discriminate between atrial fibrillation (AF) and sinus rhythm (SR). Methods For the development of the DL model we used 1499 ECGs sampled at 500 Hz of patients diagnosed with AF. All ECGs were labeled by two experienced investigators. Only ECGs labeled as SR or AF were included in the dataset. To simplify the learning process, solely the first ECG channel was used. The ECG waveforms were preprocessed using the Fourier cosine series to correct for baseline wander. Input data was generated by normalizing and scaling all different heartbeats by centralizing the R peak, leading to 15744 single heart beat samples of 80 data points (figure A). Multiple feedforward architectures were tested with different numbers of layers, filters and activation functions. The models were trained by equally splitting the data (50%SR, 50%AF) in a training (65%), validation (25%) and test set (15%). The best performing model was chosen based on the accuracy. Results A total of 1469 ECGs (1061 (72%)SR, 408 (28%)AF) were included. The model with the best performance was a feedforward model consisting three dense layers with ReLU activation and four dense layers with Linear activation. Training of the model was performed in 32 epochs. Validation of the model resulted in an accuracy of 96% (figure B), precision of 95% and recall of 96%. Conclusions The morphology based deep learning model developed in this study was able to discriminate atrial fibrillation from sinus rhythm with a fairly high accuracy using a limited size dataset and only one lead.


2013 ◽  
Vol 572 ◽  
pp. 489-493 ◽  
Author(s):  
Kai Xue ◽  
Jiu Fa Wang ◽  
Qiu Hong Li ◽  
Wei Yuan Wang ◽  
Ping Wang

An analysis method has been proposed for the vibration analysis of the Mindlin rectangular plates with general elastically boundary supports, in which the vibration displacements and the cross-sectional rotations of the mid-plane are sought as the linear combination of a double Fourier cosine series and auxiliary series functions. The use of these supplementary functions is to solve the potential discontinuity associated with the x-derivative and y-derivative of the original function along the four edges, so this method can be applied to get the exact solution. Finally the numerical results are presented to validate the correct of the method.


Sign in / Sign up

Export Citation Format

Share Document