scholarly journals Synthesis and Study of an Efficient Metal-Organic Framework Adsorbent (MIL-96(Al)) for Fluoride Removal from Water

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xingang Wang ◽  
Hui Zhu ◽  
Tongshuai Sun ◽  
Yinbo Liu ◽  
Ting Han ◽  
...  

Long-term consumption of drinking water that contains excessive amounts of fluoride can endanger human health; therefore, the preparation and application of a high-efficiency defluorination adsorbent for advanced purification of drinking water are of significant interest. This study presents a metal-organic framework adsorbent (MIL-96(Al)) with the granular structure of rice, which was generated by hydrothermal reaction. The specific surface area of MIL-96(Al) was ~220 m2 g-1, and it showed a good thermal stability. Several experiments were conducted wherein conditions, including adsorbent dosage, initial concentration, pH, and coexisting anions, were varied to understand the defluorination performance of the material. Results showed that pH (6–9) and coexisting anions had little effect on the removal efficiency of fluoride. The adsorption isotherm can be described by the Langmuir model, and the theoretical fluoride adsorption capacity of MIL-96(Al) was up to 42.19 mg Fg-1 at 298 K, which is much higher than that of the commonly used activated alumina. The adsorption process of fluoride is endothermic and follows pseudo second-order kinetics. In addition, MIL-96(Al) was shown to still achieve ~61.8% of the adsorption capacity after seven regenerations. This study shows that MIL-96(Al) is a good application prospect and could be widely used to remove fluoride from water.

Author(s):  
Lin Ren ◽  
Xudong Zhao ◽  
Baosheng Liu ◽  
Hongliang Huang

Abstract Rapid removal of radioactive strontium from nuclear wastewater is of great significance for environment safety and human health. This work reported the effective adsorption of strontium ion in a stable dual-group metal-organic framework, Zr6(OH)14(BDC-(COOH)2)4(SO4)0.75 (Zr-BDC-COOH-SO4), which contains strontium-chelating groups (-COOH and SO4) and strongly ionizable group (-COOH). Zr-BDC-COOH-SO4 exhibits very rapid adsorption kinetics (<5 min) and a maximum adsorption capacity of 67.5 mg g−1. The adsorption behaviors can be well evaluated by pseudo-second-order model and Langmuir isotherm model. Further investigations indicate that the adsorption of Sr2+ in Zr-BDC-COOH-SO4 would not be interfered by solution pH and adsorption temperature obviously. Feasible regeneration of the adsorbent was also demonstrated through a simple elution method. Mechanism investigation suggests that free -COOH contributes to the rapid adsorption based on electrostatic interaction while introduction of -SO4 can enhance the adsorption capacity largely. Thus, these results suggest that Zr-BDC-COOH-SO4 might be a potential candidate for Sr2+ removal and introducing dual groups is an effective strategy for designing high-efficiency adsorbents.


2021 ◽  
Vol 46 (11) ◽  
pp. 7772-7781 ◽  
Author(s):  
Shasha Dou ◽  
Wanyu Zhang ◽  
Yuting Yang ◽  
Shuqing Zhou ◽  
Xianfa Rao ◽  
...  

Author(s):  
Yutian Qin ◽  
Jun Guo ◽  
Meiting Zhao

AbstractBiomass is a green and producible source of energy and chemicals. Hence, developing high-efficiency catalysts for biomass utilization and transformation is urgently demanded. Metal–organic framework (MOF)-based solid acid materials have been considered as promising catalysts in biomass transformation. In this review, we first introduce the genre of Lewis acid and Brønsted acid sites commonly generated in MOFs or MOF-based composites. Then, the methods for the generation and adjustment of corresponding acid sites are overviewed. Next, the catalytic applications of MOF-based solid acid materials in various biomass transformation reactions are summarized and discussed. Furthermore, based on our personal insights, the challenges and outlook on the future development of MOF-based solid acid catalysts are provided. We hope that this review will provide an instructive roadmap for future research on MOFs and MOF-based composites for biomass transformation.


Nano Energy ◽  
2019 ◽  
Vol 58 ◽  
pp. 680-686 ◽  
Author(s):  
Zhengyu Bai ◽  
Shanshan Li ◽  
Jing Fu ◽  
Qing Zhang ◽  
Fangfang Chang ◽  
...  

2017 ◽  
Vol 23 (16) ◽  
pp. 3931-3937 ◽  
Author(s):  
Ming-Hua Xie ◽  
Rong Shao ◽  
Xin-Guo Xi ◽  
Gui-Hua Hou ◽  
Rong-Feng Guan ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 419
Author(s):  
Hamza Ahmad Isiyaka ◽  
Khairulazhar Jumbri ◽  
Nonni Soraya Sambudi ◽  
Jun Wei Lim ◽  
Bahruddin Saad ◽  
...  

Drift deposition of emerging and carcinogenic contaminant dicamba (3,6-dichloro-2-methoxy benzoic acid) has become a major health and environmental concern. Effective removal of dicamba in aqueous medium becomes imperative. This study investigates the adsorption of a promising adsorbent, MIL-101(Cr) metal-organic framework (MOF), for the removal of dicamba in aqueous solution. The adsorbent was hydrothermally synthesized and characterized using N2 adsorption-desorption isotherms, Brunauer, Emmett and Teller (BET), powdered X-ray diffraction (XRD), Fourier Transformed Infrared (FTIR) and field emission scanning electron microscopy (FESEM). Adsorption models such as kinetics, isotherms and thermodynamics were studied to understand details of the adsorption process. The significance and optimization of the data matrix, as well as the multivariate interaction of the adsorption parameters, were determined using response surface methodology (RSM). RSM and artificial neural network (ANN) were used to predict the adsorption capacity. In each of the experimental adsorption conditions used, the ANN gave a better prediction with minimal error than the RSM model. The MIL-101(Cr) adsorbent was recycled six times to determine the possibility of reuse. The results show that MIL-101(Cr) is a very promising adsorbent, in particular due to the high surface area (1439 m2 g−1), rapid equilibration (~25 min), high adsorption capacity (237.384 mg g−1) and high removal efficiency of 99.432%.


Sign in / Sign up

Export Citation Format

Share Document