scholarly journals An Experiment on the Use of Genetic Algorithms for Topology Selection in Deep Learning

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Fernando Mattioli ◽  
Daniel Caetano ◽  
Alexandre Cardoso ◽  
Eduardo Naves ◽  
Edgard Lamounier

The choice of a good topology for a deep neural network is a complex task, essential for any deep learning project. This task normally demands knowledge from previous experience, as the higher amount of required computational resources makes trial and error approaches prohibitive. Evolutionary computation algorithms have shown success in many domains, by guiding the exploration of complex solution spaces in the direction of the best solutions, with minimal human intervention. In this sense, this work presents the use of genetic algorithms in deep neural networks topology selection. The evaluated algorithms were able to find competitive topologies while spending less computational resources when compared to state-of-the-art methods.

Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2778 ◽  
Author(s):  
Mohsen Azimi ◽  
Armin Eslamlou ◽  
Gokhan Pekcan

Data-driven methods in structural health monitoring (SHM) is gaining popularity due to recent technological advancements in sensors, as well as high-speed internet and cloud-based computation. Since the introduction of deep learning (DL) in civil engineering, particularly in SHM, this emerging and promising tool has attracted significant attention among researchers. The main goal of this paper is to review the latest publications in SHM using emerging DL-based methods and provide readers with an overall understanding of various SHM applications. After a brief introduction, an overview of various DL methods (e.g., deep neural networks, transfer learning, etc.) is presented. The procedure and application of vibration-based, vision-based monitoring, along with some of the recent technologies used for SHM, such as sensors, unmanned aerial vehicles (UAVs), etc. are discussed. The review concludes with prospects and potential limitations of DL-based methods in SHM applications.


Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that makes digitization of documents viable. Since the advent of deep learning, the performance of deep learning-based object detection has improved many folds. In this work, we outline and summarize the deep learning approaches for detecting graphical page objects in the document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Ruoxi Qin ◽  
Linyuan Wang ◽  
Wanting Yu ◽  
...  

In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the GeneratorA and D are trained, GA can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and GD can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wanheng Liu ◽  
Ling Yin ◽  
Cong Wang ◽  
Fulin Liu ◽  
Zhiyu Ni

In this paper, a novel medical knowledge graph in Chinese approach applied in smart healthcare based on IoT and WoT is presented, using deep neural networks combined with self-attention to generate medical knowledge graph to make it more convenient for performing disease diagnosis and providing treatment advisement. Although great success has been made in the medical knowledge graph in recent studies, the issue of comprehensive medical knowledge graph in Chinese appropriate for telemedicine or mobile devices have been ignored. In our study, it is a working theory which is based on semantic mobile computing and deep learning. When several experiments have been carried out, it is demonstrated that it has better performance in generating various types of medical knowledge graph in Chinese, which is similar to that of the state-of-the-art. Also, it works well in the accuracy and comprehensive, which is much higher and highly consisted with the predictions of the theoretical model. It proves to be inspiring and encouraging that our work involving studies of medical knowledge graph in Chinese, which can stimulate the smart healthcare development.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


Author(s):  
Joan Serrà

Deep learning is an undeniably hot topic, not only within both academia and industry, but also among society and the media. The reasons for the advent of its popularity are manifold: unprecedented availability of data and computing power, some innovative methodologies, minor but significant technical tricks, etc. However, interestingly, the current success and practice of deep learning seems to be uncorrelated with its theoretical, more formal understanding. And with that, deep learning’s state-of-the-art presents a number of unintuitive properties or situations. In this note, I highlight some of these unintuitive properties, trying to show relevant recent work, and expose the need to get insight into them, either by formal or more empirical means.


2020 ◽  
Author(s):  
Y Sun ◽  
H Wang ◽  
Bing Xue ◽  
Y Jin ◽  
GG Yen ◽  
...  

© 1997-2012 IEEE. Convolutional neural networks (CNNs) have shown remarkable performance in various real-world applications. Unfortunately, the promising performance of CNNs can be achieved only when their architectures are optimally constructed. The architectures of state-of-the-art CNNs are typically handcrafted with extensive expertise in both CNNs and the investigated data, which consequently hampers the widespread adoption of CNNs for less experienced users. Evolutionary deep learning (EDL) is able to automatically design the best CNN architectures without much expertise. However, the existing EDL algorithms generally evaluate the fitness of a new architecture by training from scratch, resulting in the prohibitive computational cost even operated on high-performance computers. In this paper, an end-to-end offline performance predictor based on the random forest is proposed to accelerate the fitness evaluation in EDL. The proposed performance predictor shows the promising performance in term of the classification accuracy and the consumed computational resources when compared with 18 state-of-the-art peer competitors by integrating into an existing EDL algorithm as a case study. The proposed performance predictor is also compared with the other two representatives of existing performance predictors. The experimental results show the proposed performance predictor not only significantly speeds up the fitness evaluations but also achieves the best prediction among the peer performance predictors.


2020 ◽  
Author(s):  
Hudson Bruno ◽  
Esther Colombini

The Simultaneous Localization and Mapping (SLAM) problem addresses the possibility of a robot to localize itself in an unknown environment and simultaneously build a consistent map of this environment. Recently, cameras have been successfully used to get the environment’s features to perform SLAM, which is referred to as visual SLAM (VSLAM). However, classical VSLAM algorithms can be easily induced to fail when the robot motion or the environment is too challenging. Although new approaches based on Deep Neural Networks (DNNs) have achieved promising results in VSLAM, they still are unable to outperform traditional methods. To leverage the robustness of deep learning to enhance traditional VSLAM systems, we propose to combine the potential of deep learning-based feature descriptors with the traditional geometry-based VSLAM, building a new VSLAM system called LIFT-SLAM. Experiments conducted on KITTI and Euroc datasets show that deep learning can be used to improve the performance of traditional VSLAM systems, as the proposed approach was able to achieve results comparable to the state-of-the-art while being robust to sensorial noise. We enhance the proposed VSLAM pipeline by avoiding parameter tuning for specific datasets with an adaptive approach while evaluating how transfer learning can affect the quality of the features extracted.


2017 ◽  
Vol 37 (4-5) ◽  
pp. 513-542 ◽  
Author(s):  
Sen Wang ◽  
Ronald Clark ◽  
Hongkai Wen ◽  
Niki Trigoni

This paper studies visual odometry (VO) from the perspective of deep learning. After tremendous efforts in the robotics and computer vision communities over the past few decades, state-of-the-art VO algorithms have demonstrated incredible performance. However, since the VO problem is typically formulated as a pure geometric problem, one of the key features still missing from current VO systems is the capability to automatically gain knowledge and improve performance through learning. In this paper, we investigate whether deep neural networks can be effective and beneficial to the VO problem. An end-to-end, sequence-to-sequence probabilistic visual odometry (ESP-VO) framework is proposed for the monocular VO based on deep recurrent convolutional neural networks. It is trained and deployed in an end-to-end manner, that is, directly inferring poses and uncertainties from a sequence of raw images (video) without adopting any modules from the conventional VO pipeline. It can not only automatically learn effective feature representation encapsulating geometric information through convolutional neural networks, but also implicitly model sequential dynamics and relation for VO using deep recurrent neural networks. Uncertainty is also derived along with the VO estimation without introducing much extra computation. Extensive experiments on several datasets representing driving, flying and walking scenarios show competitive performance of the proposed ESP-VO to the state-of-the-art methods, demonstrating a promising potential of the deep learning technique for VO and verifying that it can be a viable complement to current VO systems.


Sign in / Sign up

Export Citation Format

Share Document