scholarly journals Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Thamizhiniyan Venkatesan ◽  
Young-Woong Choi ◽  
Young-Kyoon Kim

It is well established that various extraction factors, including the method, temperature, time, and solvent system, significantly influence the antioxidant quality of plant-derived products. Previously, we observed that extraction of Pinus densiflora bark (PDB) by the most common traditional Soxhlet method using water at two different temperature conditions 60°C and 100°C for 6-15 h noticeably altered their antioxidant quality. In this study, we examined the impact of different extraction solvents such as ethanol, methanol, isopropanol, acetonitrile, and acetone at a different percentage with water (vol/vol) on antioxidant efficiency as well as the total phenolic content (TPC) of PDB extracts. Among the fourteen different PDB extracts, the extracts obtained from 20% ethanol (E20), 40% ethanol (E40), and 20% acetonitrile (ACN20) showed more significant antioxidant potential, as well as high total phenol content (TPC). Extracts from other aqueous mixtures of organic solvents such as isopropanol, acetone, and methanol, as well as water, showed lesser antioxidant capacity and also had less TPC compared to these three most active extracts, E20, E40, and ACN20. Moreover, using ethanol at 100% for extraction significantly decreased the TPC and antioxidant capacity of PDB extracts. Data are implicating that an increased phenolic content in PDB extracts proportionally increases their antioxidant efficiency.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 234 ◽  
Author(s):  
Yili Hong ◽  
Zening Wang ◽  
Colin J. Barrow ◽  
Frank R. Dunshea ◽  
Hafiz A. R. Suleria

Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 371-371
Author(s):  
Josue Bolanos ◽  
Sun-Ok Lee ◽  
Luke Howard ◽  
Cindi Brownmiller ◽  
Shahidul Islam ◽  
...  

Abstract Objectives Sweetpotato leaf (SPL) is a natural source of phenolic compounds with potential utility as an antioxidant. The study aimed to measure the impacts of the years on SPL total phenolic content and antioxidant capacity and to identify and quantify the individual phenolic compounds. Methods Sweetpotato leaves in 2018 (27 varieties) and 2019 (24 varieties) were grinded and lyophilized. Phenolic compounds were extracted with 70% ethanol from SPLs. Total phenolic content was determined by Folin-Ciocalteu method and antioxidant potential was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. Five SPL samples with statistically highest antioxidant capacity were identified and quantified by HPLC. All statistical analyses were carried out by SAS software using ANOVA. Statistical significance was accepted at P < 0.05. Results The average of total phenolic contents in 2018 SPL samples was 43 ± 13 mg gallic acid equivalent (GAE)/g dry weight (DW) SPL whereas in 2019, it was 53 ± 9 mg GAE/g dry weight SPL. Antioxidant capacity in 2018 was 110 ± 75 µmol Trolox equivalent (TE)/g dry weight SPL whereas in 2019, it was 132 ± 32 µmol TE/g dry weight SPL. SPL1 had the highest antioxidant potential, followed by SPL9, SPL3, SPL28, and SPL11 (P < 0.05). The concentrations of major identified phenolics from the five SPL samples (#1, 9, 3, 28, and 11) in dry weight of SPL were: chlorogenic acid at 3.05 ± 0.35 mg/g, 5-monocaffeoylquinic acid (CQA) at 0.71 ± 0.06 mg chlorogenic acid equivalent (ChAE)/g, 4-CQA at 0.99 ± 0.07 mg ChAE/g, 3,4-diCQA at 1.22 ± 0.18 mg ChAE/g, 3,4,5-triCQA at 1.2 ± 0.18 mg ChAE/g, and 3,5-diCQA at 15.5 ± 4.05 mg ChAE/g. 3,5-diCQA, the predominant phenolic, was present in the highest amounts in SPL1. Conclusions The results showed that sweetpotato leaves collected in 2019 contained higher total phenolics and antioxidant capacity than the ones collected in 2018. Phenolic compounds have strong antioxidant activity in Arkansas-grown sweetpotato leaves. This study warrants further investigation of sweetpotato leaves to be utilized as an antioxidant. Funding Sources The work was supported by USDA-NIFA.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Esteban Villamil-Galindo ◽  
Franco Van de Velde ◽  
Andrea M. Piagentini

AbstractThe post-harvest processing of strawberries generates considerable amounts of by-products that consist of the inedible parts of the fruit (sepal, calyx, stem, and non-marketable portion of the fruit), which is an environmental problem for local producers and industries. This study aimed to revalue these kinds of tissues through identifying and quantifying the genotype influence on the total phenolic content, phenolic profile, and the antioxidant activity of the by-products from three strawberry cultivars: ‘Festival’ (FE), ‘San Andreas ‘ (SA), and ‘Camino Real’ (CR). The total phenolic content was determined by the Folin–Ciocalteu method, in-vitro antioxidant activity by the DPPH* radical scavenging method and the phenolic profile by PAD–HPLC. The different genotypes showed significant differences (p < 0.05) in total phenolic content (TPC), FE being the one with the highest TPC (14.97 g of gallic acid equivalents < GAE > /Kg of by-product < R >), followed by SA and CR cultivars. The antioxidant capacity of the SA and FE tissues were similar (p > 0.05) and higher (15.1–16.3 mmol Trolox equivalents < TE > /Kg R) than CR. Eight main phenolic compounds were identified and quantified on the three cultivars. Agrimoniin was the principal polyphenol (0.38–1.56 g/Kg R), and the cultivar FE had the highest concentration. This compound showed the highest correlation coefficient with the antioxidant capacity (R2 0.87; p < 0.001). This study highlighted the impact of the multi-cultivar systems in strawberry production on the bioactive potential and the diversity of secondary metabolites obtained from strawberry agro-industrial by-products at a low cost.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 579 ◽  
Author(s):  
Maria Cristiana Nunes ◽  
Isabel Fernandes ◽  
Inês Vasco ◽  
Isabel Sousa ◽  
Anabela Raymundo

The objective of this work is to increase the nutritional quality of gluten-free (GF) bread by addition of Tetraselmis chuii microalgal biomass, a sustainable source of protein and bioactive compounds. The impact of different levels of T. chuii (0%—Control, 1%, 2% and 4% w/w) on the GF doughs and breads’ structure was studied. Microdough-Lab mixing tests and oscillatory rheology were conducted to evaluate the dough´s structure. Physical properties of the loaves, total phenolic content (Folin-Ciocalteu) and antioxidant capacity (DPPH and FRAP) of the bread extracts were assessed. For the low additions of T. chuii (1% and 2%), a destabilising effect is noticed, expressed by lower dough viscoelastic functions (G’ and G’’) and poor baking results. At the higher level (4%) of microalgal addition, there was a structure recovery with bread volume increase and a decrease in crumb firmness. Moreover, 4% T. chuii bread presented higher total phenolic content and antioxidant capacity when compared to control. Bread with 4% T. chuii seems particularly interesting since a significant increase in the bioactivity and an innovative green appearance was achieved, with a low impact on technological performance, but with lower sensory scores.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Nguyen Phuoc Minh

Pigmented maize (Zea mays L.) is a healthy crop due to its perfect proximates and phytochemicals. Thermal treatment was widely used to enhance phytochemical constituents in different kinds of crops. This research evaluated the impact of temperature (100, 115, 130 °C) and duration (10, 15, 20 min) in roasting to anthocyanin, total phenolic content and antioxidant capacity of pigmented maize. Results showed that thermal treatment at 115 °C in 10 min significantly improved anthocyanin in pigmented maize; however, this content would be lower at higher temperatures or prolonged exposing time. Meanwhile, total phenolic content and antioxidant capacity in the pigmented maize were recorded at the highest level when being roasted at 100 oC for 10 min. This research proved that phytochemical constituents and antioxidant capacity inside the pigmented maize would be seriously damaged at high temperatures and extended duration in roasting. By this, producers should pay more attention to thermal conditions in roasting.


2020 ◽  
Vol 11 (3) ◽  
pp. 3069-3074
Author(s):  
Jambula DineshBabu ◽  
Venugopalan Santhosh Kumar

Cadaba farinosa (family Capparidaceae) is generally known as “Indian cadaba” in the traditional ayurvedic system. The current study, aerial parts of different concentrates (Pet.ether, ethyl acetate and methanol) of Cadaba farinose was evaluated for its in-vitro antioxidant potential by hydroxy radical taking ascorbate as a standard. The iron-chelating activity is taking Ethylenediamine tetraacetate as standard and estimation of total phenol content as equivalent to mg/g of Gallic acid. The methanolic concentrates of Cadaba farinose & ascorbic acid exhibited antioxidant potential possessing IC50 205µg/ml & 65µg/ml (Hydroxy radical) , methanolic concentrates of Cadaba farinose & Ethylenediamine tetraacetate exhibited antioxidant potential possessing IC50 240µg/ml & 70µg/ml (iron-chelating activity). The methanolic and EA concentrates of Cadaba farinose contain total phenolic content 9.86 ± 0.62 and 3.98 ± 0.54, respectively. The IC50 value was originated that methanolic concentrates of Cadaba farinose more efficient in hydroxy radical, iron chelating activity compared EA & PE concentrates. The methanolic extract of Cadaba farinose having more free radical activity due to the presence of phenolic content as a bioactive compound. This result indicates that aerial parts of methanolic concentrate Cadaba farinose could serve as a natural antioxidant, which may be useful in preventing free radical-induced diseases.


2016 ◽  
Vol 44 (2) ◽  
pp. 28-33 ◽  
Author(s):  
Geovanna Tafurt García ◽  
Luisa Jiménez Vidal ◽  
Ana Calvo Salamanca

<p>In this work, the possible correlation between the antioxidant activities and the Total Phenolic Content (TPC) and chemical composition of Lamiaceae (<em>H. conferta, H. dilatata, H. mutabilis, H. suaveolens</em>), Burseraceae (<em>P. heptaphyllum, T. rhoifoila, T. panamensis</em>),<em> </em>and Lauraceae (<em>Ocotea </em>sp.) were evaluated. The Trolox Equivalent Antioxidant Capacity or the Total Antioxidant Activity (TAA) was determined by using a colorimetric assay with the ABTS radical cation, Effective Concentration (EC<sub>50</sub>) was evaluated with the DPPH radical, and the TPC was established by the Folin-Ciocalteu method, for ethanolic extracts obtained by cold maceration and evaporation to dryness. Both the TAA and the EC<sub>50</sub> were highly correlated with the TPC. The barks of <em>T. rhoifolia</em> and<em> T. panamensis</em> demonstrated the highest antioxidant capacities. The Burseraceae spp. exhibited the highest TPC, and the Lamiaceae (<em>Hyptis</em> spp.) demonstrated the lowest TPC.</p>


2016 ◽  
Vol 194 ◽  
pp. 587-594 ◽  
Author(s):  
Nurcan Değirmencioğlu ◽  
Ozan Gürbüz ◽  
Emine Nur Herken ◽  
Aysun Yurdunuseven Yıldız

Author(s):  
Mentham Ramesh ◽  
Chandu Babu Rao

The current investigation is intended to evaluate the content of phytochemical constituents and antioxidant potential of hydroalcoholic extracts of stem and root of Grewia serrulata DC (HAESGS & HAERGS) and leaf and bark of Grewia Nervosa (Lour.) panigrahi (HAELGN & HAEBGN). Initially, all the extracts at different concentrations were estimated for their total phenolic content and total flavonoid content. The study was further extended for their antioxidant potential evaluation using various in vitro methods such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide radical scavenging assays. The total phenolic content (mg gallic acid equivalent per gram of extract) was high in HAELGN (170.82±0.19) and HAERGS (123.00±0.48) than HAESGS (111.2±0.26) and HAEBGN (119.60±0.23). The total flavonoid content (mg quercetin equivalent per gram) is greater in HAERGS (71.24±0.50) and HAESGS (65.68±0.27) than HAELGN (55.82±0.35) and HAEBGN (62.38±0.45). The IC50 values (µg/ml) of different plant extracts inferred that DPPH radical scavenging activity is greater in HAELGN (42.91±0.88) and HAEBGN (53.87±0.35) than HAESGS (126.73±1.20) and HAERGS (88.87±1.25). However, hydroxyl and superoxide radical scavenging activity is more in HAERGS (135.41±1.19 & 88.00±1.42) and HAELGN (172.28±1.91 & 108.163±1.09) than HAESGS (237.3±1.65 & 110.074±0.87) and HAEBGN (204.7±1.04 & 125.54±1.07). The results of present comprehensive analysis demonstrated that both the plants Grewia serrulata DC and Grewia Nervosa (Lour.) panigrahi possess high phenolic, flavonoid contents and potential antioxidant activity, and could be used as a valid source of natural antioxidants and might be utilized for pharmacological screening of various therapeutic activities. Keywords: Grewia serrulata; Grewia Nervosa; Total Phenolic content; Total flavonoid content; Antioxidant potential


Sign in / Sign up

Export Citation Format

Share Document