scholarly journals Deep Learning-Based GNSS Network-Based Real-Time Kinematic Improvement for Autonomous Ground Vehicle Navigation

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Hee-Un Kim ◽  
Tae-Suk Bae

Much navigation over the last several decades has been aided by the global navigation satellite system (GNSS). In addition, with the advent of the multi-GNSS era, more and more satellites are available for navigation purposes. However, the navigation is generally carried out by point positioning based on the pseudoranges. The real-time kinematic (RTK) and the advanced technology, namely, the network RTK (NRTK), were introduced for better positioning and navigation. Further improved navigation was also investigated by combining other sensors such as the inertial measurement unit (IMU). On the other hand, a deep learning technique has been recently evolving in many fields, including automatic navigation of the vehicles. This is because deep learning combines various sensors without complicated analytical modeling of each individual sensor. In this study, we structured the multilayer recurrent neural networks (RNN) to improve the accuracy and the stability of the GNSS absolute solutions for the autonomous vehicle navigation. Specifically, the long short-term memory (LSTM) is an especially useful algorithm for time series data such as navigation with moderate speed of platforms. From an experiment conducted in a testing area, the LSTM algorithm developed the positioning accuracy by about 40% compared to GNSS-only navigation without any external bias information. Once the bias is taken care of, the accuracy will significantly be improved up to 8 times better than the GNSS absolute positioning results. The bias terms of the solution need to be estimated within the model by optimizing the layers as well as the nodes each layer, which should be done in further research.

2021 ◽  
Author(s):  
Megha Chakraborty ◽  
Georg Rümpker ◽  
Horst Stöcker ◽  
Wei Li ◽  
Johannes Faber ◽  
...  

<p>This study attempts to use Deep Learning architectures to design an efficient real time magnitude classifier for seismic events. Various combinations of Convolutional Neural Networks (CNNs) and Bi- & Uni-directional Long-Short Term Memory (LSTMs) and Gated Recurrent Unit (GRUs) are tried and tested to obtain the best performing model with optimum hyperparameters. In order to extract maximum information from the seismic waveforms, this study uses not only the time series data but also its corresponding Fourier Transform (spectrogram) as input. Furthermore, the Deep Learning architecture is combined with other machine learning algorithms to generate the final magnitude classifications. This study is likely to help seismologists in improving the Earthquake Early Warning System to avoid issuing false warnings, which not only alarms people unnecessarily but can also result in huge financial losses due to stoppage of industrial machinery etc.</p>


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1078
Author(s):  
Ruxandra Stoean ◽  
Catalin Stoean ◽  
Miguel Atencia ◽  
Roberto Rodríguez-Labrada ◽  
Gonzalo Joya

Uncertainty quantification in deep learning models is especially important for the medical applications of this complex and successful type of neural architectures. One popular technique is Monte Carlo dropout that gives a sample output for a record, which can be measured statistically in terms of average probability and variance for each diagnostic class of the problem. The current paper puts forward a convolutional–long short-term memory network model with a Monte Carlo dropout layer for obtaining information regarding the model uncertainty for saccadic records of all patients. These are next used in assessing the uncertainty of the learning model at the higher level of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining physician towards an accurate diagnosis. Means and standard deviations are additionally calculated for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection where a random forest model can perform both classification and ranking of variable importance. The approach is validated on a real-world problem of classifying electrooculography time series for an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing between the three classes of patients.


Author(s):  
Osama A. Osman ◽  
Hesham Rakha

Distracted driving (i.e., engaging in secondary tasks) is an epidemic that threatens the lives of thousands every year. Data collected from vehicular sensor technologies and through connectivity provide comprehensive information that, if used to detect driver engagement in secondary tasks, could save thousands of lives and millions of dollars. This study investigates the possibility of achieving this goal using promising deep learning tools. Specifically, two deep neural network models (a multilayer perceptron neural network model and a long short-term memory networks [LSTMN] model) were developed to identify three secondary tasks: cellphone calling, cellphone texting, and conversation with adjacent passengers. The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) time series data, collected using vehicle sensor technology, were used to train and test the model. The results show excellent performance for the developed models, with a slight improvement for the LSTMN model, with overall classification accuracies ranging between 95 and 96%. Specifically, the models are able to identify the different types of secondary tasks with high accuracies of 100% for calling, 96%–97% for texting, 90%–91% for conversation, and 95%–96% for the normal driving. Based on this performance, the developed models improve on the results of a previous model developed by the author to classify the same three secondary tasks, which had an accuracy of 82%. The model is promising for use in in-vehicle driving assistance technology to report engagement in unlawful tasks or alert drivers to take over control in level 1 and 2 automated vehicles.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050001
Author(s):  
Yadigar N. Imamverdiyev ◽  
Fargana J. Abdullayeva

In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nahla F. Omran ◽  
Sara F. Abd-el Ghany ◽  
Hager Saleh ◽  
Abdelmgeid A. Ali ◽  
Abdu Gumaei ◽  
...  

The novel coronavirus disease (COVID-19) is regarded as one of the most imminent disease outbreaks which threaten public health on various levels worldwide. Because of the unpredictable outbreak nature and the virus’s pandemic intensity, people are experiencing depression, anxiety, and other strain reactions. The response to prevent and control the new coronavirus pneumonia has reached a crucial point. Therefore, it is essential—for safety and prevention purposes—to promptly predict and forecast the virus outbreak in the course of this troublesome time to have control over its mortality. Recently, deep learning models are playing essential roles in handling time-series data in different applications. This paper presents a comparative study of two deep learning methods to forecast the confirmed cases and death cases of COVID-19. Long short-term memory (LSTM) and gated recurrent unit (GRU) have been applied on time-series data in three countries: Egypt, Saudi Arabia, and Kuwait, from 1/5/2020 to 6/12/2020. The results show that LSTM has achieved the best performance in confirmed cases in the three countries, and GRU has achieved the best performance in death cases in Egypt and Kuwait.


Author(s):  
Arief Fadhlurrahman Rasyid ◽  
Dewi Agushinta R. ◽  
Dharma Tintri Ediraras

The stock price changes at any time within seconds. The stock price is a time series data. Thus, it is necessary to have the best analysis model in predicting the stock price to make decisions to avoid losses in investing. In this research, the method used two models Deep Learning namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting Indonesia Composite Stock Price Index (IHSG). The dataset used is historical data from the Jakarta Composite Index (^JKSE) stock price in 2013-2020 obtained through Yahoo Finance. The results suggest that Deep learning methods with LSTM and GRU models can predict Indonesia Composite Stock Price Index (IHSG). Based on the test results obtained RMSE value of 71.28959454502723 with an accuracy rate of 92.39% for LSTM models and obtained RMSE value of 70.61870739073838 with an accuracy rate of 96.77% on GRU models.


Computers ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 99
Author(s):  
Sultan Daud Khan ◽  
Louai Alarabi ◽  
Saleh Basalamah

COVID-19 caused the largest economic recession in the history by placing more than one third of world’s population in lockdown. The prolonged restrictions on economic and business activities caused huge economic turmoil that significantly affected the financial markets. To ease the growing pressure on the economy, scientists proposed intermittent lockdowns commonly known as “smart lockdowns”. Under smart lockdown, areas that contain infected clusters of population, namely hotspots, are placed on lockdown, while economic activities are allowed to operate in un-infected areas. In this study, we proposed a novel deep learning prediction framework for the accurate prediction of hotpots. We exploit the benefits of two deep learning models, i.e., Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) and propose a hybrid framework that has the ability to extract multi time-scale features from convolutional layers of CNN. The multi time-scale features are then concatenated and provide as input to 2-layers LSTM model. The LSTM model identifies short, medium and long-term dependencies by learning the representation of time-series data. We perform a series of experiments and compare the proposed framework with other state-of-the-art statistical and machine learning based prediction models. From the experimental results, we demonstrate that the proposed framework beats other existing methods with a clear margin.


Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract This study focuses on the feature vector identification and Remaining Useful Life (RUL) estimation of SAC305 solder alloy PCB's of two different configurations during varying conditions of temperature and vibration. The feature vectors are identified using the strain signals acquired from four symmetrical locations of the PCB at regular intervals during vibration. Two different types of experiments are employed to characterize the PCB's dynamic changes with varying temperature and acceleration levels. The strain signals acquired during each of these experiments are compared based on both time and frequency domain characteristics. Different statistical and frequency-based techniques were used to identify the strain signal variations with changes in the environment and loading conditions. The feature vectors in predicting failure at a constant working temperature and load were identified, and as an extension to this work, the effectiveness of the feature vectors during varying conditions of temperature and acceleration levels are investigated. The remaining Useful Life of the packages was estimated using a deep learning approach based on Long Short Term Memory (LSTM) network. This technique can identify the underlying patterns in multivariate time series data that can predict the packages' life. The autocorrelation function's residuals were used as the multivariate time series data in conjunction with the LSTM deep learning technique to forecast the packages' life at different varying temperatures and acceleration levels during vibration.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yao Li

Faults occurring in the production line can cause many losses. Predicting the fault events before they occur or identifying the causes can effectively reduce such losses. A modern production line can provide enough data to solve the problem. However, in the face of complex industrial processes, this problem will become very difficult depending on traditional methods. In this paper, we propose a new approach based on a deep learning (DL) algorithm to solve the problem. First, we regard these process data as a spatial sequence according to the production process, which is different from traditional time series data. Second, we improve the long short-term memory (LSTM) neural network in an encoder-decoder model to adapt to the branch structure, corresponding to the spatial sequence. Meanwhile, an attention mechanism (AM) algorithm is used in fault detection and cause identification. Third, instead of traditional biclassification, the output is defined as a sequence of fault types. The approach proposed in this article has two advantages. On the one hand, treating data as a spatial sequence rather than a time sequence can overcome multidimensional problems and improve prediction accuracy. On the other hand, in the trained neural network, the weight vectors generated by the AM algorithm can represent the correlation between faults and the input data. This correlation can help engineers identify the cause of faults. The proposed approach is compared with some well-developed fault diagnosing methods in the Tennessee Eastman process. Experimental results show that the approach has higher prediction accuracy, and the weight vector can accurately label the factors that cause faults.


2021 ◽  
Vol 35 (1) ◽  
pp. 1-10
Author(s):  
Senthil Kumar Paramasivan

In the modern era, deep learning is a powerful technique in the field of wind energy forecasting. The deep neural network effectively handles the seasonal variation and uncertainty characteristics of wind speed by proper structural design, objective function optimization, and feature learning. The present paper focuses on the critical analysis of wind energy forecasting using deep learning based Recurrent neural networks (RNN) models. It explores RNN and its variants, such as simple RNN, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN models. The recurrent neural network processes the input time series data sequentially and captures well the temporal dependencies exist in the successive input data. This review investigates the RNN models of wind energy forecasting, the data sources utilized, and the performance achieved in terms of the error measures. The overall review shows that the deep learning based RNN improves the performance of wind energy forecasting compared to the conventional techniques.


Sign in / Sign up

Export Citation Format

Share Document