scholarly journals Study on Cumulative Damage Law of Stainless Steel-Reinforced Concrete Columns under Step Impact Loading

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Bo Wu ◽  
Shixiang Xu ◽  
Guoxue Zhang

In this study, an ultrahigh drop hammer impact test system was adopted for multiple horizontal impact tests on stainless steel-reinforced concrete columns and ordinary-reinforced concrete columns with the same longitudinal reinforcement diameter. The damage performance after impact was studied, and the finite element model was established. The test measured the impact force, displacement, cracking of the specimen during the impact, and the concrete damage near the bottom of the specimen. The test results showed that the failure mode of the stainless steel-reinforced concrete specimen under multiple impacts was the same as that of the ordinary reinforced concrete specimen. Under the same impact conditions, the maximum impact force, the maximum displacement, and the damage degree of stainless steel-reinforced concrete column specimen were lower than those of the ordinary reinforced concrete specimen.

2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092488
Author(s):  
Bo Wu ◽  
Shixiang Xu

Horizontal impact tests of stainless steel–reinforced concrete piers with different reinforcement ratios at different impact velocities were carried out by using the ultra-high drop weight impact test system. Degree of piers damage after impact was comprehensively analyzed by measuring the acceleration of the impact body, the displacement of the top of the pier specimens, the strain of the steel bars, the rotation of the pier bottom, and the crack development of concrete. The test results showed that under the same impact velocity, with the decrease in reinforcement ratio, the peak acceleration of the impact body, the displacement of the top of pier specimens, the strain of steel bars, and the pier bottom rotation all increase. To a certain extent, increasing the reinforcement ratio of bridge piers can effectively reduce impact damage.


2011 ◽  
Vol 90-93 ◽  
pp. 1614-1617
Author(s):  
Guo Xue Zhang ◽  
Chang Wei Wang ◽  
Zhi Hao Zhang

Three specimens with ribbed stainless steel rebar and one specimen with ribbed ordinary steel rebar are tested concerning the strength degradation and energy dissipation of stainless steel reinforced concrete columns. The tests results indicate that the damage of the specimens exhibit ductile failure characteristics, and the reinforced concrete columns with stainless steel rebar damage to a lesser extent, appear good ductility and energy dissipation. The strength degradation of stainless steel reinforced column with high axial compression ratio is quite obvious, and with the increasing of the stirrup ratio of column with stainless steel rebar, the strength of column is enhanced.


2020 ◽  
Vol 12 (5) ◽  
pp. 769-777 ◽  
Author(s):  
Guoxue Zhang ◽  
Yingfeng Wang ◽  
Shixiang Xu ◽  
Juan Lu ◽  
Yangyang Zhou

To study the impact resistance of the stainless steel reinforced concrete after reinforced with CFRP (Carbon Fibre Reinforced Plastic), the multifunction ultra-high heavy drop hammer test system was adopted to conduct multiple horizontal impact test research on three stainless steel reinforced concrete piers before and after they are reinforced. The test results showed that with equal impact energy, the maximum impact force of the stainless steel reinforced concrete piers was larger than that of the stainless steel reinforced concrete piers that were reinforced with CFRP, while after the concrete piers were reinforced, the peak displacement of the piers was obviously smaller than that before they were reinforced and the residual deformation also became smaller, which improved the flexural rigidity of the section. And the local anti-damage capacity can be improved so as to lengthen the life of structures by reinforcing the stainless steel reinforced concrete pier with carbon fiber.


2012 ◽  
Vol 256-259 ◽  
pp. 588-591
Author(s):  
Guo Xue Zhang ◽  
Chang Wei Wang ◽  
Jia Wei Huang

In order to study the elastic-plastic mechanics properties of the stainless steel reinforced concrete columns under low-cyclic load, the engineering open-source earthquake simulation system OpenSees is used to carry out the numerical simulation. The comparison between the computed results and the pseudo-static test results shows that the OpenSees may stimulate the mechanical properties of the stainless steel reinforced concrete columns by using the fiber element model, both of the skeleton curves and hysteretic curves are well agreement with the tests results.


Sign in / Sign up

Export Citation Format

Share Document