scholarly journals Characterization of Nanosilica/Low-Density Polyethylene Nanocomposite Materials

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Malek Alghdeir ◽  
Khaled Mayya ◽  
Mohamed Dib

Six ratios of nanosilica particles were employed to fabricate low-density polyethylene (LDPE) composites using melt mixing and hot molding methods. Several composite films with different ratios (0.5, 1, 2.5, 5, 7.5, and 10 wt%) of SiO2 were prepared. The obtained composite films were identified and characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). At a specific mixing ratio, far infrared radiation transmittance was prohibited while the ultraviolet-visible transmittance is allowed; this will be explained in detail. Optical measurements show that the composite films prevent the transmission of IR radiation near 9 μm and allow UV-VIS transmission during sun-shining time. The mechanical behaviour of a nanosilica-reinforced LDPE composite was studied using tensile tests. The addition of 1 wt% nanosilica has successfully enhanced the mechanical properties of the LDPE material.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ching Yern Chee ◽  
N. L. Song ◽  
Luqman Chuah Abdullah ◽  
Thomas S. Y. Choong ◽  
Azowa Ibrahim ◽  
...  

Nanocomposites based on low-density polyethylene (LDPE), containing 0.5, 1, 2, 3, and 5 wt% of nanoalumina, were prepared by melt-mixing at 125°C and hot melt-pressing to thin polymer film at 125°C. To enhance the interfacial interaction between alumina and LDPE, alumina surface was treated with silane which acts as coupling agent. The effects of alumina additions to the structure and morphology of LDPE matrix were characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The mechanical behaviour of nanoalumina-reinforced LDPE composite was studied using tensile tests, flexural tests, and impact tests. The interfacial adhesion between nano alumina particle and LDPE matrix was investigated. The result showed that the reinforcement performance of nano alumina to LDPE matrix was attributed to the interfacial adhesion between nanoparticle and polymer matrix. The addition of 1 wt% nano alumina has successfully enhanced the mechanical properties of LDPE material.


2014 ◽  
Vol 46 (7) ◽  
pp. 422-429 ◽  
Author(s):  
Madathil Sunilkumar ◽  
Ambalakkandy Abdul Gafoor ◽  
Abdulaziz Anas ◽  
Areepuravan Parakkal Haseena ◽  
Athiyanathil Sujith

2018 ◽  
Vol 32 (3) ◽  
pp. 297-311 ◽  
Author(s):  
Yousef Ahmad Mubarak ◽  
Raghda Talal Abdulsamad

This work was intended to provide an understanding of the effect of microcrystalline cellulose (MCC) on the mechanical properties of low-density polyethylene (LDPE). The impact resistance and the tensile properties of low-density LDPE/MCC composites were investigated. The weight fraction of MCC was varied at (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt%). The obtained blends were then used to prepare the required tensile and impact testing samples by hot compression molding technique. It has been found that MCC has a strong influence on the mechanical properties of LDPE. At a low MCC weight fraction, there was a little improvement in the ultimate strength, fracture stress, and elongation at break, but at a high MCC weight fraction, the tensile properties were deteriorated and reduced significantly. The addition of 1 wt% MCC to LDPE enhanced the mentioned properties by 10, 25, and 6%, respectively. While at 30 wt% MCC, these properties were lowered by 36, 25, and 96%. The elastic modulus of LDPE composites was improved on all MCC weight fractions used in the study, at 20 wt% MCC, an increase in the elastic modulus by 12 folds was achieved. On the other hand and compared with the impact strength of pure LDPE, the addition of MCC particles enhanced the impact strength, the highest value obtained was for LDPE composites filled with 10 wt% MCC where the impact strength enhanced by two folds.


2019 ◽  
Vol 39 (9) ◽  
pp. 805-812
Author(s):  
Toshio Igarashi ◽  
Soichiro Ohno ◽  
Sayaka Oda ◽  
Satoru Hirosawa ◽  
Yusuke Hiejima ◽  
...  

Abstract Friction measurements have been carried out to characterize surface damages during photodegradation of low-density polyethylene. The average and mean deviation of the friction coefficients increase with the irradiation time in the early stage of photodegradation processes, indicating the increase in the surface roughness, whereas the mechanical properties remain essentially unchanged. In the following stage, where the ductile-brittle transition takes place, the mean deviation of the friction coefficients shows an appreciable decrease with maintaining almost constant average values, suggesting that the surface becomes more homogeneous. Beyond the ductile-brittle transition, both of the average and mean deviation of the friction coefficients gradually increase with the irradiation time, indicating further enhancement of surface roughness, followed by formation of surface cracks. The soundness of the friction measurements is confirmed by comparing with optical measurements of the surface roughness, and it is suggested that the present method gives a convenient and sensitive method of detection for degradation in polymeric materials.


2013 ◽  
Vol 47 (4) ◽  
pp. 365-372 ◽  
Author(s):  
S Sultana ◽  
HP Nur ◽  
T Saha ◽  
M Saha

In this research work, cellulosic waste mango (Mangifera indica) saw dust used as the reinforcing material with low density polyethylene (LDPE). A number of samples of saw dust reinforced low density polyethylene (LDPE) composites were prepared by compression moulding technique. In order to improve the mechanical properties of saw dust-LDPE composites, unbleached raw saw dust fibers were modified by oxidation using sodium hypochlorite. FT-IR spectroscopic and scanning electron micrograph (SEM) analyses were done and the results showed the evidence of positive oxidation reaction. The effects of oxidized saw dust on the performance of oxidized saw dust reinforced LDPE composites were studied comparing with the raw saw dust-LDPE composites. The effects of fiber content on the physico-mechanical properties of composites were also studied by preparing the composites with different percentage of fiber loading (from 7.5 wt% to 30 wt%) for each type of composite. Mechanical properties such as tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus of the resulting composite were measured. Better results were obtained from oxidized saw dust-LDPE composites. Scanning electron micrograph and water absorption tests were carried out for all composites and improved results were found for oxidized saw dust-LDPE composites. Bangladesh J. Sci. Ind. Res. 47(4), 365-372, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14065


2015 ◽  
Vol 30 (6) ◽  
pp. 855-884 ◽  
Author(s):  
AK Sudari ◽  
AA Shamsuri ◽  
ES Zainudin ◽  
PM Tahir

Three types of surfactants, specifically cationic, anionic, and nonionic, at different weight percentages were added into high-density polyethylene/low-density polyethylene/cellulose (HDPE/LDPE/cellulose) biocomposites via melt mixing. The cationic and anionic surfactants which are hexadecyltrimethylammonium bromide (HTAB) and sodium stearate (SS), respectively, were added from 4 to 20 wt%, whereas the nonionic surfactant which is sorbitan monostearate (SM) was added from 1 to 5 wt%. The mechanical testing results exhibited that the addition of HTAB increased tensile strength and tensile modulus, while SS deteriorated mechanical properties, while SM increased impact strength and tensile extension of the biocomposites. Based on the mechanical properties results, optimum weight percentages of HTAB and SM were 12 wt% and 4 wt%, respectively. The scanning electron microscopic micrographs displayed that the amount of cellulose fillers pullout decreased with the addition of HTAB, followed by SM, but it increased with SS. Fourier transform infrared spectra, X-ray diffractometer patterns, thermogravimetric analysis results, and differential scanning calorimetry thermograms have confirmed the presence of physical interactions only with the addition of HTAB and SM. Based on the results, compatibilizing effect was found in HTAB, whereas SM has not showed compatibilizing effect but instead plasticizing effect. However, neither compatibilizing nor plasticizing effect was exhibited by SS.


2008 ◽  
Vol 109 (2) ◽  
pp. 1014-1021 ◽  
Author(s):  
Maurizio Penco ◽  
Stefania Della Sciucca ◽  
Elisa Passaglia ◽  
Guido Giordani ◽  
Serena Coiai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document