scholarly journals Strategies to Enhance Mesenchymal Stem Cell-Based Therapies for Acute Respiratory Distress Syndrome

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jibin Han ◽  
Yanmin Li ◽  
Yuanyuan Li

Acute respiratory distress syndrome (ARDS) is a multifaced disease characterized by the acute onset of hypoxemia, worsened pulmonary compliance, and noncardiogenic pulmonary edema. Despite over five decades of research, specific treatments for established ARDS are still lacking. MSC-based therapies have the advantage of targeting nearly all pathophysiological components of ARDS by means of a variety of secreted trophic factors, exerting anti-inflammatory, antioxidative, immunomodulatory, antiapoptotic, and proangiogenic effects, resulting in significant structural and functional recovery following ARDS in various preclinical models. However, the therapeutic efficacy of transplanted MSCs is limited by their poor engraftment and low survival rate in the injured tissues, major barriers to clinical translation. Accordingly, several strategies have been explored to improve MSC retention in the lung and enhance the innate properties of MSCs in preclinical models of ARDS. To provide a comprehensive and updated view, we summarize a large body of experimental evidence for a variety of strategies directed towards strengthening the therapeutic potential of MSCs in ARDS.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
M. García de Acilu ◽  
S. Leal ◽  
B. Caralt ◽  
O. Roca ◽  
J. Sabater ◽  
...  

Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect ofω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use ofω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness ofω-3 polyunsaturated fatty acids.


Author(s):  
Declan Byrnes ◽  
Claire H. Masterson ◽  
Antonio Artigas ◽  
John G. Laffey

AbstractSepsis and acute respiratory distress syndrome (ARDS) constitute devastating conditions with high morbidity and mortality. Sepsis results from abnormal host immune response, with evidence for both pro- and anti-inflammatory activation present from the earliest phases. The “proinflammatory” response predominates initially causing host injury, with later-phase sepsis characterized by immune cell hypofunction and opportunistic superinfection. ARDS is characterized by inflammation and disruption of the alveolar-capillary membrane leading to injury and lung dysfunction. Sepsis is the most common cause of ARDS. Approximately 20% of deaths worldwide in 2017 were due to sepsis, while ARDS occurs in over 10% of all intensive care unit patients and results in a mortality of 30 to 45%. Given the fact that sepsis and ARDS share some—but not all—underlying pathophysiologic injury mechanisms, the lack of specific therapies, and their frequent coexistence in the critically ill, it makes sense to consider therapies for both conditions together. In this article, we will focus on the therapeutic potential of mesenchymal stem/stromal cells (MSCs). MSCs are available from several tissues, including bone marrow, umbilical cord, and adipose tissue. Allogeneic administration is feasible, an important advantage for acute conditions like sepsis or ARDS. They possess diverse mechanisms of action of relevance to sepsis and ARDS, including direct and indirect antibacterial actions, potent effects on the innate and adaptive response, and pro-reparative effects. MSCs can be preactivated thereby potentiating their effects, while the use of their extracellular vesicles can avoid whole cell administration. While early-phase clinical trials suggest safety, considerable challenges exist in moving forward to phase III efficacy studies, and to implementation as a therapy should they prove effective.


Sign in / Sign up

Export Citation Format

Share Document