scholarly journals Disturbance Attenuation and Rejection for a Class of Switched Nonlinear Systems Subject to Input and Sensor Saturations

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yunliang Wei ◽  
Liping Sun ◽  
Shengsen Jia ◽  
Kunming Liu ◽  
Fanwei Meng

This paper investigates the problem of disturbance attenuation and rejection for a class of switched nonlinear systems subject to input and sensor saturations, in which exosystem generated disturbances and H2-norm bounded disturbances are considered. The full-order and reduced-order observers are designed according to whether the system states are available or not. Based on the estimating values of the system states and exosystem generated disturbances, the design schemes for the composite controllers are put forward based on the full-order and reduced-order observers, respectively. For a switched system, the input and sensor saturations would influence the effective synthesis of observer and controller. By sector nonlinearity technology, the stability of the augmented closed-loop systems under the proposed composite controllers are analyzed, and the conditions of synthesis of the observers and controllers are further presented to ensure the augmented systems to be robustly asymptotically stable with a weighted H∞ performance level. An example is given to guarantee the effectiveness of the proposed control schemes.

2017 ◽  
Vol 15 (1) ◽  
pp. 1635-1648 ◽  
Author(s):  
Hao Xing ◽  
Leipo Liu ◽  
Xiangyang Cao ◽  
Zhumu Fu ◽  
Shuzhong Song

Abstract This paper considers the guaranteed cost finite-time boundedness of positive switched nonlinear systems with D-perturbation and time-varying delay. Firstly, the definition of guaranteed cost finite-time boundedness is introduced. By using the Lyapunov-Krasovskii functional and average dwell time (ADT) approach, an output feedback controller is designed and sufficient conditions are obtained to ensure the corresponding closed-loop systems to be guaranteed cost finite-time boundedness (GCFTB). Such conditions can be solved by linear programming. Finally, two examples are provided to show the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Jian Guo ◽  
Chao Liu ◽  
Zhengrong Xiang

This paper investigates robust finite-timeH∞control for a class of impulsive switched nonlinear systems with time-delay. Firstly, using piecewise Lyapunov function, sufficient conditions ensuring finite-time boundedness of the impulsive switched system are derived. Then, finite-timeH∞performance analysis for impulsive switched systems is developed, and a robust finite-timeH∞state feedback controller is proposed to guarantee that the resulting closed-loop system is finite-time bounded withH∞disturbance attenuation. All the results are given in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to show the effectiveness of the proposed method.


Author(s):  
Jiangbo Yu ◽  
Jizhong Wang ◽  
Changxue Zhang ◽  
Yuqiang Wu

This paper investigates the global regulation problem for a class of nonlinear systems with integral input-to-state stable (iISS) dynamic uncertainty. By designing a reduced-order observer, a systematic output feedback control strategy is proposed. The designed dynamic controller can achieve the global set-point regulation control and guarantee all signals of the closed-loop systems bounded. The developed control schemes find its application in the pendulum control system. Simulation results verify its effectiveness.


2020 ◽  
Vol 42 (14) ◽  
pp. 2698-2707
Author(s):  
Masoud Bahraini ◽  
Mohammad Javad Yazdanpanah ◽  
Shokufeh Vakili ◽  
Mohammad Reza Jahed-Motlagh

Controller design for nonlinear systems in its general form is complicated and an open problem. Finding a solution to this problem becomes more complicated when unwanted terms, such as disturbance, are taken into account. To provide a robust design for a subclass of nonlinear systems, sliding mode controllers (SMCs) are used. These controllers have a systematic design procedure and can reject bounded disturbances and at the same time guarantee stability. The guaranteed stability is achieved by separating system states into two parts and assuming that the input to state stability (ISS) condition holds for internal dynamics. This condition restricts the applicability of the SMC and limits the system performance when the controller is designed based on that. In order to remove this restriction and improve the performance, the ISS condition has been relaxed in this study. The relaxation is performed by redesigning SMCs based on suggested Lyapunov functions. The proposed idea insures global asymptotic stability of the closed loop system and is used to revise different well-known SMCs such as conventional SMC, terminal SMC, non-singular terminal SMC, integral SMC, super-twisting SMC, and super-twisting integral SMC. Comparisons between conventional and revised versions are made using simulation to demonstrate excellence of the revisited controllers.


2011 ◽  
Vol 48-49 ◽  
pp. 1112-1115
Author(s):  
Juan Wang ◽  
Tao Zhang

A static output feedback (SOF) control schemes are proposed. The basic idea of it is to construct piecewise quadratic Lyapunov function and introduce a dissipation inequality to guarantee the system energy dissipation. It is shown that the controller analysis or the synthesis problem can be casted as convex optimization problem, and the controller can be obtained by solving a set of linear matrix inequalities. The designed controllers not only guarantee the stability of the closed-loop systems, but also obtain the disturbance attenuation ability.


2014 ◽  
Vol 643 ◽  
pp. 83-89
Author(s):  
Shu Rong Sun ◽  
Guang Rong Zhang ◽  
Ping Zhao

In this paper, we study the stability properties of a general class of nonautonomous discrete-time switched nonlinear systems. The switched systems consist of stable and unstable subsystems. Based on Lyapunov functions, some sufficient conditions for uniform stability, uniform asymptotic stability and uniform exponential stability are established.


2013 ◽  
Vol 455 ◽  
pp. 337-343
Author(s):  
Hai Long Xing ◽  
Wen Shan Cui

In this paper, the feedback control problem is considered for a class of parabolic distributed parameter systems (DPS). By employing a new Lyapunov-Krasovskii functional as well as the linear matrix inequality (LMI), a novel feedback controller is developed, which can guarantee the closed-loop system states uniformly convergent to zero. The stability conditions for closed-loop systems can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. At last, a numerical example shows the effectiveness of the presented LMI-based methods.


Sign in / Sign up

Export Citation Format

Share Document