scholarly journals Study on the Process Optimization and Wear Resistance of Electron Beam Cladding WC-CoCr Coating on Inconel 617 Surface

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hailang Liu ◽  
Yiping Huang ◽  
Bo Wang ◽  
Xiaoyu Wang

In order to enhance the high-temperature wear resistance of the nickel-base alloy, the electron beam is used to clad the WC-CoCr composite coating on the Inconel 617 surface. A six-factor and three-level orthogonal experiment is designed using Minitab software with scanning beam current, frequency, high voltage, beam spot diameter, offset sweep amplitude, and scanning speed as variables, and the variance and range of the test results are analyzed. The optimal cladding process parameters were determined according to the influence of various factors on the quality characteristics of the cladding layer. The wear behavior at 200°C, 600°C, and 1000°C and microstructure and phase composition of coating before and after electron beam treatment were tested. The results show that the ion exchange between the coating and the substrate is carried out after electron beam treatment. The WC, CoCr, (Fe, Ni)C6, Fe3W3C phase, and solid solution of α-Co were found in the cladding layer, and the microstructure of the coating is mainly dendrite and eutectic on CoCr substrate. The test of wear behavior at high temperature shows that the wear rate of the coating treated by electron beam at 200°C, 600°C, and 1000°C is 10.14 times, 6 times, and 2.29 times lower than that of the substrate, respectively. Moreover, the furrow and scratches of the cladding layer are less than those of the substrate at high temperature. The wear resistance of the coating was improved.

2020 ◽  
Vol 22 (4) ◽  
pp. 1031-1046
Author(s):  
X. Canute ◽  
M. C. Majumder

AbstractThe need for development of high temperature wear resistant composite materials with superior mechanical properties and tribological properties is increasing significantly. The high temperature wear properties of aluminium boron carbide composites was evaluated in this investigation. The effect of load, sliding velocity, temperature and reinforcement percentage on wear rate was determined by the pin heating method using pin heating arrangement. The size and structure of base alloy particles change considerably with an increase of boron carbide particles. The wettability and interface bonding between the matrix and reinforcement enhanced by the addition of potassium flurotitanate. ANOVA technique was used to study the effect of input parameters on wear rate. The investigation reveals that the load had higher significance than sliding velocity, temperature and weight fraction. The pin surface was studied with a high-resolution scanning electron microscope. Regression analysis revealed an extensive association between control parameters and response. The developed composites can be used in the production of automobile parts requiring high wear, frictional and thermal resistance.


Alloy Digest ◽  
1993 ◽  
Vol 42 (7) ◽  

Abstract DELORO 716 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance and wear resistance as well as machining and joining. Filing Code: Ni-435. Producer or source: Deloro Stellite Inc.


2021 ◽  
Vol 1093 (1) ◽  
pp. 012028
Author(s):  
A A Ruktuev ◽  
D V Lazurenko ◽  
N A Kiseleva ◽  
I Y Petrov ◽  
M G Golkovski

2000 ◽  
Vol 125 (1-3) ◽  
pp. 251-256 ◽  
Author(s):  
Y.F. Ivanov ◽  
V.P. Rotshtein ◽  
D.I. Proskurovsky ◽  
P.V. Orlov ◽  
K.N. Polestchenko ◽  
...  

2021 ◽  
Vol 118 (6) ◽  
pp. 614
Author(s):  
Chellamuthu Ramesh Kumar ◽  
Subramanian Baskar ◽  
Ganesan Ramesh ◽  
Pathinettampadian Gurusamy ◽  
Thirupathy Maridurai

In this research, investigations were carried out on Al6061 base alloy with the changing weight percentage of silicon carbide (SiC) and boron carbide (B4C) with keeping the amount of talc constant. The main objective of this present study was to improve the wear resistance of aluminum alloy using SiC/B4C/talc ceramic particles using stir-casting technique and how the eco-friendly talc content influencing the solid lubricity during the abrasion process. The experiments were conducted via orthogonal array of L27 using Taguchi’s method. The optimum value along with the coefficient of friction was obtained on the basis of grey relational equations and ANOVA, which helped in analysis of most influential input parameters such as applied load, sliding speed, sliding distance and percentage of reinforcement. Conformation tests were performed for the purpose of validation of the experimental results. The specimens were analyzed using scanning electron microscope (SEM) with EDX for micro structural studies. The SiC, B4C and talc presence in the composite helped to improve the mechanical properties, according to the results. The presence of solid lubricant talc as reinforcement to the aluminum hybrid composite reduced the wear properties and decreased the co-efficient friction. These wear resistance improved aluminum metal matrix composites could be used in automobile, defense and domestic applications where high strength and wear resistance required with lesser specific weight.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Tuba Yener ◽  
Azmi Erdogan ◽  
Mustafa Sabri Gök ◽  
Sakin Zeytin

Abstract The aim of this study was to investigate the effect of low-temperature aluminizing process on the microstructure and dry sliding wear properties of Mirrax steel. Low-temperature aluminizing process was applied on Mirrax steel at 600, 650, and 700 °C for 2, 4, and 6 h. The packs for the process were prepared using pure aluminum powder as aluminum deposition source. Ammonium chloride NH4Cl and Seydisehir Al2O3 powder were used as the activator and the inert filler, respectively. Scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis were applied for characterization of the coating surfaces. The through-thickness variation in the layer microstructure was determined and it was found to vary between 1 µm and 45 µm which increased with higher process temperature and time. After the deposition process, the coating layer hardness increased to 1000 HVN, whereas the hardness of the matrix was 250 HVN. The wear tests were performed using a ball-on-disc tribometer under 5 N load at room temperature and 500 °C on aluminized and untreated Mirrax steel. In both room temperature and high-temperature wear tests, it was determined that the aluminizing process increased the wear resistance of Mirrax steel. Increasing aluminizing time and temperature also increased the wear resistance. The uncoated and thin-coated samples generally exhibited wear in the form of plastic deformation and adhesion related ruptures. A high degree of tribological layer was observed on the wear trace on samples with high coating thickness, especially in high-temperature tests. Therefore, the volume losses in these samples were induced by fatigue crack formation and delamination.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 682
Author(s):  
Liang Sun ◽  
Wenyan Zhai ◽  
Hui Dong ◽  
Yiran Wang ◽  
Lin He

Cr3C2-Ni cermet is a kind of promising material especially for wear applications due to its excellent wear resistance. However, researches were mainly concentrated on the experiment condition of room temperature, besides high-temperature wear mechanism of the cermet would be utilized much potential applications and also lack of consideration. In present paper, the influence of Mo content on the high-temperature wear behavior of in-situ Cr3C2-20 wt. % Ni cermet was investigated systematically. The friction-wear experiment was carried out range from room temperature to 800 °C, while Al2O3 ceramic was set as the counterpart. According to experimental results, it is indicated that the coefficient of friction (COF) of friction pairs risen at the beginning of friction stage and then declined to constant, while the wear rate of Cr3C2-20 wt. % Ni cermet risen continuously along with temperature increased, which attributes to the converted wear mechanism generally from typical abrasive wear to severe oxidation and adhesive wear. Generally, the result of wear resistance was enhanced for 13.4% (at 400 °C) and 31.5% (at 800 °C) by adding 1 wt. % Mo. The in-situ newly formed (Cr, Mo)7C3 ceramic particle and the lubrication phase of MoO3 can effectively improve the wear resistance of Cr3C2-20 wt. % Ni cermet.


Author(s):  
E.S. Vashchuk ◽  
E.A. Budovskikh ◽  
L.P. Bashchenko ◽  
V.E. Gromov ◽  
K.V. Aksenova

The paper concerns improving the microhardness and wear resistance of steel 45 by the combined treatment of electroexplosive borocoppering with the subsequent electron-beam treatment. It is found that surface roughness at the area of the electroexplosive treatment increases along with the absorbed power density and the mass of boron powder. The electron-beam treatment leads to a decrease of roughness and appearance of craters instead of radial melt flow traces. The depth structure of the electroexplosive alloying area with a thickness of 25 µm includes a coating layer, near-surface, intermediate, and boundary layers. The surface microhardness and the depth of the hardening zone after the electroexlosive alloying increase along with the absorbed power density and boron concentration and reach the values of 1400 HV The electron-beam treatment causes merging of the coating and the surface layers and increases the hardening zone depth up to 80 µm. A cellular or dendritic crystallization structure is formed near the surface, and a grain structure is formed in the depth. The inhomogeneous distribution of alloying elements over the volume of the alloying area and its adjustment during the electron-beam treatment are established. The inter-dendritic distances and grain diameters increase as the absorbed power density becomes higher with the increase of the electron-beam treatment exposure time. Also, the size of martensite needles increases in the depth. The combined treatment produces the sub microcrystalline strengthening phases-borides FeB, Fe2B, FeB2, carboboride Fe23 (C, B)6 , and carbide B4C. The microhardness level is reduced to 800 HV, and the wear resistance increases up to five times when compared to the wear resistance of the base.


Sign in / Sign up

Export Citation Format

Share Document