scholarly journals Nonlinear Parametric Vibration and Chaotic Behaviors of an Axially Accelerating Moving Membrane

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Mingyue Shao ◽  
Jimei Wu ◽  
Yan Wang ◽  
Qiumin Wu

Nonlinear vibration characteristics of a moving membrane with variable velocity have been examined. The velocity is presumed as harmonic change that takes place over uniform average speed, and the nonlinear vibration equation of the axially moving membrane is inferred according to the D’Alembert principle and the von Kármán nonlinear thin plate theory. The Galerkin method is employed for discretizing the vibration partial differential equations. However, the solutions concerning to differential equations are determined through the 4th order Runge–Kutta technique. The results of mean velocity, velocity variation amplitude, and aspect ratio on nonlinear vibration of moving membranes are emphasized. The phase-plane diagrams, time histories, bifurcation graphs, and Poincaré maps are obtained; besides that, the stability regions and chaotic regions of membranes are also obtained. This paper gives a theoretical foundation for enhancing the dynamic behavior and stability of moving membranes.

Author(s):  
Hongying Li ◽  
Xibo Wang ◽  
Shumeng Zhang ◽  
Jian Li

Abstract Nonlinear vibrations of axially moving plates partially immersed in fluid are investigated in this paper. The system has time dependency in velocity as well as tension in axial direction. The Galerkin method is used to solve the nonlinear vibration differential equation. The method of multiple scales and Runge-Kutta method are applied to solve the nonlinear vibration response of the system. Additionally, the stability conditions of trivial and nontrivial solutions are analyzed using the Routh-Hurwitz criterion. The effects of mean velocity, amplitude of pulsating velocity, mean tension, amplitude of pulsating tension and pulsating frequency on the complex dynamics of the system are obtained. The study results reveal rich dynamic behaviors of fluid-structure coupling system.


2018 ◽  
Vol 37 (4) ◽  
pp. 774-788
Author(s):  
Mingyue Shao ◽  
Jimei Wu ◽  
Yan Wang ◽  
Shudi Ying

In this paper, the nonlinear vibration characteristics of a moving printing membrane under external excitation are studied. Based on the Von Karman nonlinear plate theory, the nonlinear vibration equation of the axial motion membrane under the external excitation is deduced. The Galerkin’s method is used to discretize the vibration differential equations of the membrane, and then the state equation of the system is obtained. The state equation of the system is numerically solved by the fourth-order Runge–Kutta method. The relationship between the nonlinear vibration characteristics and the amplitude of external excitation, damping coefficient, and aspect ratio of the printing membrane is analyzed by using the time histories, phase-plane portraits, Poincare maps, and bifurcation diagrams. Chaotic intervals and the stable working range of the moving membrane are obtained. This study provides a theoretical basis for predicting and controlling the stability of the membrane.


Author(s):  
Mergen H. Ghayesh ◽  
Marco Amabili

In this paper, the in-plane and out-of-plane nonlinear dynamics of an axially moving plate with distributed rotational springs at boundaries is examined numerically. The Von Kármán plate theory along with the Kirchhoff’s hypothesis are employed to construct the kinetic and potential energies of the system. The Lagrange equation is used so as to obtain the equations of motion which are in the form of a set of second-order nonlinear ordinary differential equations. This set is recast into a set of first-order nonlinear ordinary differential equations with coupled terms. Gear’s backward-differentiation-formula is employed to integrate this set of equations numerically, yielding the generalized coordinates of the system as a function of time. The bifurcation diagrams of Poincaré maps are then constructed by sectioning these time histories in every period of the external excitation force. The results are shown in the form of time histories, phase-plane portraits, and Poincaré sections. The effect of the stiffness of the rotational springs on the global dynamics of the system is also investigated.


1999 ◽  
Vol 122 (1) ◽  
pp. 21-30 ◽  
Author(s):  
F. Pellicano ◽  
F. Vestroni

The present paper analyzes the dynamic behavior of a simply supported beam subjected to an axial transport of mass. The Galerkin method is used to discretize the problem: a high dimensional system of ordinary differential equations with linear gyroscopic part and cubic nonlinearities is obtained. The system is studied in the sub and super-critical speed ranges with emphasis on the stability and the global dynamics that exhibits special features after the first bifurcation. A sample case of a physical beam is developed and numerical results are presented concerning the convergence of the series expansion, linear subcritical behavior, bifurcation analysis and stability, and direct simulation of global postcritical dynamics. A homoclinic orbit is found in a high dimensional phase space and its stability and collapse are studied. [S0739-3717(00)00501-8]


1976 ◽  
Vol 43 (3) ◽  
pp. 455-458 ◽  
Author(s):  
Kenzo Sato

On the basis of the ordinary thin plate theory, the stability of a simply supported elliptical plate subjected to uniform compression in its middle plane is considered by the use of circular functions, hyperbolic functions, Mathieu functions, and modified Mathieu functions which are solutions of the equilibrium equation of the buckled plate. The first five eigenvalues for the buckling mode symmetrical about both axes are calculated numerically for a variety of aspect ratios of the ellipse. The limiting cases of a circular plate and of an infinitely long strip are also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xin Zhao ◽  
Dianshu Liu ◽  
Shenglin Li ◽  
Meng Wang ◽  
Shuaikang Tian ◽  
...  

In this study, a C-ALS underground cavity scanner was used to detect the shapes of mining goafs. In addition, GTS software was adopted to establish a three-dimensional geological model based on the status of the stopes, geological data, and mechanical parameters of each rock mass and to analyze the roof areas of the goafs. In regard to the morphology of the study area, based on a thin plate theory and the obtained field sampling data, a formula was established for the thicknesses of the reserved protective layers in the goafs. In addition, a formula for the thicknesses of the protective layers in the curved gobs was obtained. The thickness formula of the protective layers was then successfully verified. The detection results showed that the roof shapes of the goafs in the Yuanjiacun Iron Mine were mainly arc-shaped, and the spans of the goafs were generally less than 20 m. The stability of the arc-shaped roofs was found to be greater than that of the plate-shaped roofs. Therefore, by reducing the thicknesses of the protective layers in mining goafs, the ore recovery rates can be increased on the basis of safe production conditions. The formula of the thickness of the security layers obtained through the thin plate theory was revised based on the statistical results of the roof shapes of the goafs and then combined using GTS and FLAC3D. The modeling method successfully verified the stability of the mined-out areas. It was found that the verification results were good, and the revised formula was able to improve the recovery rate of the ore under the conditions of meeting safe production standards. Also, it was found that the revised formula could be used in the present situation. At the same time, it was also determined that the complexity of the rock masses obstructed the full identification of the joints and fissures in the present orebodies. Therefore, it is necessary to incorporate C-ALS underground cavity scanners to regularly observe the shapes of the goafs in order to ensure that stability and safety standards are maintained.


2011 ◽  
Vol 338 ◽  
pp. 487-490 ◽  
Author(s):  
Hai Wei Lv ◽  
Ying Hui Li ◽  
Qi Kuan Liu ◽  
Liang Li

Transverse vibration of an axially moving viscoelastic sandwich beam is investigated in this paper. Based on the Kelvin constitutive equation, transverse controlling equation is established. First of all, the multiple scales method is applied to obtained steady-state response. Elimination of scales terms will give us the amplitude of vibrations. Additionally, the stability conditions of trivial and non-trivial solutions are analyzed using Routh-Hurwitz criterion. Eventually, numerical results are obtained to show the thickness of core layer, mean velocity, the amplitude of fluctuation effects on natural frequencies and response curves.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450010 ◽  
Author(s):  
Yan Qing Wang ◽  
Xing Hui Guo ◽  
Zhen Sun ◽  
Jian Li

The stability and dynamics of an axially moving unidirectional plate partially immersed in a liquid and subjected to a nonlinear aerodynamic excitation are investigated. The method of singular functions is adopted to study the dynamic characteristics of the unidirectional plates with discontinuous characteristics. Nonlinearities due to large-amplitude plate motions are considered by using the classical nonlinear thin plate theory, with allowance for the effect of viscous structural damping. The velocity potential and Bernoulli's equation are used to describe the fluid pressure acting on the unidirectional plate. The effect of fluid on the vibrations of the plate may be equivalent to added mass of the plate. The formulation of added mass is obtained from kinematic boundary conditions of the plate–fluid interfaces. The system is discretized by Galerkin's method while a model involving two degrees of freedom, is adopted. Attention is focused on the behavior of the system in the region of dynamic instability, and several motions are found by numerical simulations. The effects of the moving speed and some other parameters on the dynamics of the system are also investigated. It is shown that chaotic motions can occur in this system in several certain regions of parameter space.


2011 ◽  
Vol 9 (1) ◽  
pp. 23-33
Author(s):  
Snezana Mitic ◽  
Ratko Pavlovic

The influence of longitudinal constructive discontinuity on the stability of the plate in the domain of elastic stability is solved based on the classical thin plate theory. The constructive discontinuities divide the plate into fields of different thickness. The plate has two opposite edges simply supported while the other two edges can take any combination of free, simply supported and clamped conditions. The Levy method is used for the solution of the problem of stability, with the aim of developing an analytical approach when researching the stability of plates with longitudinal constructive discontinuities and also with the aim of obtaining exact solutions for plates with non-uniform thickness. The exact solutions for stability presented herein are very valuable as they may serve as benchmark results for researches in this area.


Author(s):  
Anwar Sadath ◽  
C. P. Vyasarayani

In this paper, we develop Galerkin approximations for determining the stability of delay differential equations (DDEs) with time periodic coefficients and time periodic delays. Using a transformation, we convert the DDE into a partial differential equation (PDE) along with a boundary condition (BC). The PDE and BC we obtain have time periodic coefficients. The PDE is discretized into a system of ordinary differential equations (ODEs) using the Galerkin method with Legendre polynomials as the basis functions. The BC is imposed using the tau method. The resulting ODEs are time periodic in nature; thus, we resort to Floquet theory to determine the stability of the ODEs. We show through several numerical examples that the stability charts obtained from the Galerkin method agree closely with those obtained from direct numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document