scholarly journals Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Eva Schmelzer ◽  
Daniel T. McKeel ◽  
Jörg C. Gerlach

Human mesenchymal stem cells can be isolated from various organs and are in studies on therapeutic cell transplantation. Positive clinical outcomes of transplantations have been attributed to both the secretion of cytokines and growth factors as well as the fusion of donor cells with that of the host. We compared human mesenchymal stem cells from six different tissues for their transplantation-relevant potential. Furthermore, for prospective allogenic transplantation we developed a semipermeable hollow-fiber membrane enclosure, which would prevent cell fusion, would provide an immune barrier, and would allow for easy removal of donor cells from patients after recovery. We investigated human mesenchymal stem cells from adipose tissue, amniotic tissue, bone marrow, chorionic tissue, liver, and umbilical cord. We compared their multilineage differentiation potential, secretion of growth factors, and the expression of genes and surface markers. We found that although the expression of typical mesenchymal stem cell-associated gene THY1 and surface markers CD90 and CD73 were mostly similar between mesenchymal stem cells from different donor sites, their expression of lineage-specific genes, secretion of growth factors, multilineage differentiation potential, and other surface markers were considerably different. The encasement of mesenchymal stem cells in fibers affected the various mesenchymal stem cells differently depending on their donor site. Conclusively, mesenchymal stem cells isolated from different tissues were not equal, which should be taken into consideration when deciding for optimal sourcing for therapeutic transplantation. The encasement of mesenchymal stem cells into semipermeable membranes could provide a physical immune barrier, preventing cell fusion.

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiayue Huang ◽  
Wenwen Zhang ◽  
Jie Yu ◽  
Yating Gou ◽  
Nizhou Liu ◽  
...  

Abstract Background Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium. Methods hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague–Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests. Results hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group. Conclusions PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.


STEMedicine ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. e109
Author(s):  
Xingzhi Liu ◽  
Zhihua Zhao ◽  
Zhe Zhao ◽  
Zhongjuan Xu ◽  
Junjun Cao ◽  
...  

Mesenchymal stem cells (MSCs) have shown great potentials in regenerative medicine for their low immunogenicity, multilineage differentiation potential, and extensive sources. However, the heterogeneity of MSCs limits their clinical application and industrial prospects. In this review, we introduced the heterogeneity of MSCs in terms of their applications, sources, functions, and surface markers; discussed the major factors leading to the heterogeneity in MSCs; summarized the main approaches to study the MSC heterogeneity, and addressed the clinical challenges resulting from heterogeneity. Finally, we proposed the strategies that might be used to purify the MSCs and to eliminate the heterogeneity of MSCs for their standardized production and reliable clinical application.


2018 ◽  
Vol 5 (4) ◽  
pp. 12
Author(s):  
Fatemeh Hoseinpour Kasgari ◽  
Maryam Samareh Salavati Pour ◽  
Alireza Farsinejad ◽  
Ahmad Fatemi ◽  
Roohollah Mirzaee Khalilabadi

 ntroduction: Due to high differentiation potential and self-renewality, Mesenchymal stem cells are now widely considered by researchers in several diseases. FBS is used as a supplement in culture media for proliferation, differentiation, and other culture processes of MSCs, which is associated with transmission risk of a variety of infections as well as immune responses. PRGF derived from platelets contains growth factors causing the growth and proliferation of MSCs. This study was conducted to compare the effect of PRGF in comparison to FBS on the expression of h-TERT gene, in umbilical cord-derived MSCs. Materials and Methods: This study is an experimental research. Four expired platelet concentrate bags were obtained from Kerman blood transfusion center, and PRGF was prepared by multiple centrifugation rounds of the platelet bag. Calcium chloride was added as an anticoagulant to PRGF in order to prevent gelatinization of the culture medium. On the other hand, mesenchymal stem cells were isolated from the umbilical cord as a primary culture. The phenotype of the cells was confirmed by flow cytometry, and the cells were randomly cultured as control (using FBS) and experimental (using PRGF) groups. The expression of the gene involved in increasing cell longevity (h-TERT) was investigated by real-time PCR technique after six days. Results: Mesenchymal stem cells were successfully isolated from the umbilical cord. Morphologically, the mesenchymal cells cultured in the experimental group (using PRGF) were similar to the cells in the control medium. The cells exhibited a high expression level of CD73, CD90, and CD105, while the surface markers of hematopoietic cells such as CD45 and CD34 were slightly expressed. Therefore, there was no significant difference in the expression of cell surface markers between control and experimental groups. In this study, using the real-time PCR technique, it was shown that PRGF derived from the platelet could increase the expression of h- TERT gene in the umbilical cord mesenchymal stem cells compared with the control. (P = 0.034)  


2012 ◽  
Vol 19 (2) ◽  
pp. 75-79 ◽  
Author(s):  
Gabrielis KUNDROTAS

Human mesenchymal stem cells (MSCs) are widely used for treatment of various diseases. Clinical applications require large quantities of MSCs, therefore these cells must be expanded in the culture system. It is believed that contamination of MSC cultures with fibroblasts may lead to the decrease of the stem cell differentiation potential. Moreover, such stem cell preparations are potentially unsafe to use for clinical applications since a few fibroblasts can become tumorigenic. Therefore, there is a need to separate MSCs from fibroblasts. However, studies show that MSCs and fibroblasts have much in common. These two types of cells share such properties as identical spindle-like morphology, plastic adherence and the same expression of most surface antigens. The aim of this review article is to analyze the literature on the similarities and differences between the MSCs and fibroblasts, particularly in the expression of cell surface markers in order to determine which could be used for quick separating of MSCs from fibroblasts. Interestingly, the results of recent studies suggest that the use of CD10, CD26, CD106, CD146 and ITGA11 could be helpful for the discrimination of MSCs from fibroblasts. Identification and elimination of fibroblasts from MSC cultures could improve the MSC yield and differentiation potential and also prevent possible tumor formation after MSC transplantation.


Author(s):  
Lin Yuan ◽  
Naoya Sakamoto ◽  
Guanbin Song ◽  
Masaaki Sato

Mesenchymal stem cells (MSCs) represent as multipotent stem cells which hold the abilities of self-renewal and give rise to cells of diverse lineages [1]. With their remarkable combination of multipotent differentiation potential and low immunogenicity, MSCs are considered to be an attractive candidate for cell-based tissue repair and regenerative tissue engineering [2, 3]. Increasing number of studies has demonstrated that mobilization and migration of injected MSCs to the damaged tissues is a key step for these cells to participate in disease treatment and tissue regeneration [4, 5].


2012 ◽  
Vol 1498 ◽  
pp. 39-45
Author(s):  
Courtney E. LeBlon ◽  
Caitlin R. Fodor ◽  
Tony Zhang ◽  
Xiaohui Zhang ◽  
Sabrina S. Jedlicka

ABSTRACTHuman mesenchymal stem cells (hMSCs) were routinely cultured on tissue-culture polystyrene (TCPS) to investigate the in vitro aging and cell stiffening. hMSCs were also cultured on thermoplastic polyurethane (TPU), which is a biocompatible polymer with an elastic modulus of approximately 12.9MPa, to investigate the impact of substrate elastic modulus on cell stiffening and differentiation potential. Cells were passaged over several generations on each material. At each passage, cells were subjected to osteogenic and myogenic differentiation. Local cell elastic modulus was measured at every passage using atomic force microscopy (AFM) indentation. Gene and protein expression was examined using qRT-PCR and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Results show that the success of myogenic differentiation is highly reliant on the elastic modulus of the undifferentiated cells. The success of osteogenic differentiations is most likely somewhat dependent on the cell elastic modulus, as differentiations were more successful in earlier passages, when cells were softer.


2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document