scholarly journals Heterogeneity of mesenchymal stem cells: characterization and application in cell therapy

STEMedicine ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. e109
Author(s):  
Xingzhi Liu ◽  
Zhihua Zhao ◽  
Zhe Zhao ◽  
Zhongjuan Xu ◽  
Junjun Cao ◽  
...  

Mesenchymal stem cells (MSCs) have shown great potentials in regenerative medicine for their low immunogenicity, multilineage differentiation potential, and extensive sources. However, the heterogeneity of MSCs limits their clinical application and industrial prospects. In this review, we introduced the heterogeneity of MSCs in terms of their applications, sources, functions, and surface markers; discussed the major factors leading to the heterogeneity in MSCs; summarized the main approaches to study the MSC heterogeneity, and addressed the clinical challenges resulting from heterogeneity. Finally, we proposed the strategies that might be used to purify the MSCs and to eliminate the heterogeneity of MSCs for their standardized production and reliable clinical application.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Eva Schmelzer ◽  
Daniel T. McKeel ◽  
Jörg C. Gerlach

Human mesenchymal stem cells can be isolated from various organs and are in studies on therapeutic cell transplantation. Positive clinical outcomes of transplantations have been attributed to both the secretion of cytokines and growth factors as well as the fusion of donor cells with that of the host. We compared human mesenchymal stem cells from six different tissues for their transplantation-relevant potential. Furthermore, for prospective allogenic transplantation we developed a semipermeable hollow-fiber membrane enclosure, which would prevent cell fusion, would provide an immune barrier, and would allow for easy removal of donor cells from patients after recovery. We investigated human mesenchymal stem cells from adipose tissue, amniotic tissue, bone marrow, chorionic tissue, liver, and umbilical cord. We compared their multilineage differentiation potential, secretion of growth factors, and the expression of genes and surface markers. We found that although the expression of typical mesenchymal stem cell-associated gene THY1 and surface markers CD90 and CD73 were mostly similar between mesenchymal stem cells from different donor sites, their expression of lineage-specific genes, secretion of growth factors, multilineage differentiation potential, and other surface markers were considerably different. The encasement of mesenchymal stem cells in fibers affected the various mesenchymal stem cells differently depending on their donor site. Conclusively, mesenchymal stem cells isolated from different tissues were not equal, which should be taken into consideration when deciding for optimal sourcing for therapeutic transplantation. The encasement of mesenchymal stem cells into semipermeable membranes could provide a physical immune barrier, preventing cell fusion.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiayue Huang ◽  
Wenwen Zhang ◽  
Jie Yu ◽  
Yating Gou ◽  
Nizhou Liu ◽  
...  

Abstract Background Caused by the injury to the endometrial basal layer, intrauterine adhesions (IUA) are characterized by uterine cavity obliteration, leading to impaired fertility. Human amniotic mesenchymal stem cells (hAMSCs) have the potential to promote endometrial regeneration mainly through paracrine ability. PPCNg is a thermoresponsive biomaterial consisted of Poly (polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN) mixed with gelatin, which has been reported as a scaffold for stem cell transplantation. This study aims to investigate the therapeutic effect of hAMSCs combined with PPCNg transplantation in promoting the regeneration of injured endometrium. Methods hAMSCs were cultured in different concentrates of PPCNg in vitro, and their proliferation, apoptosis and cell cycle were examined by CCK-8 assay and flow cytometry. Immunofluorescence was used to determine the MSCs specific surface markers. The expression of pluripotent genes was analyzed by qRT-PCR. The multiple-lineage differentiation potential was further evaluated by detecting the differentiation-related genes using qRT-PCR and specific staining. The Sprague–Dawley (SD) rat IUA model was established with 95% ethanol. hAMSCs combined with PPCNg were transplanted through intrauterine injection. The retention of DiR-labeled hAMSCs was observed by vivo fluorescence imaging. The endometrium morphology was assessed using hematoxylin and eosin (H&E) and Masson staining. Immunohistochemistry staining was performed to detect biomarkers related to endometrial proliferation, re-epithelialization, angiogenesis and endometrial receptivity. The function of regenerated endometrium was evaluated by pregnancy tests. Results hAMSCs maintained normal cell proliferation, apoptosis and cell cycle in PPCNg. Immunofluorescence and qRT-PCR showed that hAMSCs cultured in PPCNg and hAMSCs cultured alone expressed the same surface markers and pluripotent genes. hAMSCs exhibited normal multilineage differentiation potential in PPCNg. Vivo fluorescence imaging results revealed that the fluorescence intensity of hAMSCs combined with PPCNg intrauterine transplantation was stronger than that of direct hAMSCs intrauterine transplantation. Histological assays showed the increase in the thickness of endometrial and the number of endometrial glands, and the remarkably decrease in the fibrosis area in the PPCNg/hAMSCs group. The expressions of Ki-67, CK7, CK19, VEGF, ER and PR were significantly increased in the PPCNg/hAMSCs group. Moreover, the number of implanted embryos and pregnancy rate were significantly higher in the PPCNg/hAMSCs group than in the hAMSCs group. Conclusions PPCNg is suitable for growth, phenotype maintenance and multilineage differentiation of hAMSCs. hAMSCs combined with PPCNg intrauterine transplantation can facilitate the regeneration of injured endometrium by improving utilization rates of hAMSCs, and eventually restore reproductive capacity.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 379
Author(s):  
Rabia Ikram ◽  
Shamsul Azlin Ahmad Shamsuddin ◽  
Badrul Mohamed Jan ◽  
Muhammad Abdul Qadir ◽  
George Kenanakis ◽  
...  

Thanks to stem cells’ capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.


2020 ◽  
Vol 28 (1) ◽  
pp. 283-302
Author(s):  
Dandan Zhang ◽  
Ni Ni ◽  
Yuyao Wang ◽  
Zhimin Tang ◽  
Huiqin Gao ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ADSCs) are promising candidate for regenerative medicine to repair non-healing bone defects due to their high and easy availability. However, the limited osteogenic differentiation potential greatly hinders the clinical application of ADSCs in bone repair. Accumulating evidences demonstrate that circular RNAs (circRNAs) are involved in stem/progenitor cell fate determination, but their specific role in stem/progenitor cell osteogenesis, remains mostly undescribed. Here, we show that circRNA-vgll3 originating from the vgll3 locus markedly enhances osteogenic differentiation of ADSCs; nevertheless, silencing of circRNA-vgll3 dramatically attenuates ADSC osteogenesis. Furthermore, we validate that circRNA-vgll3 functions in ADSC osteogenesis through a circRNA-vgll3/miR-326-5p/integrin α5 (Itga5) pathway. Itga5 promotes ADSC osteogenic differentiation and miR-326-5p suppresses Itga5 translation. CircRNA-vgll3 directly sequesters miR-326-5p in the cytoplasm and inhibits its activity to promote osteogenic differentiation. Moreover, the therapeutic potential of circRNA-vgll3-modified ADSCs with calcium phosphate cement (CPC) scaffolds was systematically evaluated in a critical-sized defect model in rats. Our results demonstrate that circRNA-vgll3 markedly enhances new bone formation with upregulated bone mineral density, bone volume/tissue volume, trabeculae number, and increased new bone generation. This study reveals the important role of circRNA-vgll3 during new bone biogenesis. Thus, circRNA-vgll3 engineered ADSCs may be effective potential therapeutic targets for bone regenerative medicine.


2010 ◽  
Vol 393 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Geetanjali B. Tomar ◽  
Rupesh K. Srivastava ◽  
Navita Gupta ◽  
Amruta P. Barhanpurkar ◽  
Satish T. Pote ◽  
...  

2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


2009 ◽  
Vol 18 (9) ◽  
pp. 1013-1028 ◽  
Author(s):  
Tom K. Kuo ◽  
Jennifer H. Ho ◽  
Oscar K. Lee

Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.


2020 ◽  
Vol 8 (2) ◽  
pp. 83-87
Author(s):  
Katarzyna Stefańska ◽  
Rut Bryl ◽  
Lisa Moncrieff ◽  
Nelson Pinto ◽  
Jamil A. Shibli ◽  
...  

AbstractMesenchymal stem cells are currently one of the most extensively studied topics in experimental medicine, given their unique properties in terms of immunomodulation, multiple factors secretion and homing to injured tissue sites. Such characteristics were proven to be invaluable in various disease management treatments, for example in cancer, tissue regeneration or immunologic/inflammatory-related disorders. MSCs were first isolated from bone marrow in 1960-1970’s and were characterized as cells with fibroblastoid shape and osteogenic potential, which form clonogenic colonies (CFU-F – colony-forming unit-fibroblast). Nowadays the term ‘mesenchymal stem cells’ is used in regards to all of the cells meeting minimal criteria published in 2006 by the International Society for Cellular Therapy, however the name ‘mesenchymal stromal cells’ has been suggested to be more appropriate. Regardless of the name controversy, these cells exhibit multilineage differentiation potential, self-renewal ability, adhere to plastic and express specific surface antigens. In 2011 the first commercial product based on MSCs was developed and many more are expected to emerge. This review focuses on a historical perspective concerning studies on MSCs, controversies regarding their name and their characteristics and clinical utilization.Running title: The history of mesenchymal stem cells


Sign in / Sign up

Export Citation Format

Share Document