scholarly journals Nonlinear Voltage Regulation Algorithm for DC-DC Boost Converter with Finite-Time Convergence

2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Chun Duan ◽  
Di Wu

For the DC-DC Boost converter system, this paper employs the finite-time control technique to design a new nonlinear fast voltage regulation control algorithm. Compared with the existing algorithm, the main advantage of the proposed algorithm lies in the fact that it can offer a fast convergent rate, i.e., finite-time convergence. Based on the average state space model of Boost converter system and finite-time control theory, rigorous stability analysis showed that the output voltage converges to the reference voltage in a finite time. Simulation results demonstrate the efficiency of the proposed method. Compared with PI control algorithm, it is shown that the proposed algorithm has a faster regulation performance and stronger robust performance on load-variation.

Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


2017 ◽  
Vol 64 (9) ◽  
pp. 1082-1086 ◽  
Author(s):  
Yingying Cheng ◽  
Haibo Du ◽  
Chen Yang ◽  
Zuo Wang ◽  
Jinping Wang ◽  
...  

2017 ◽  
Vol 88 (4) ◽  
pp. 2359-2369 ◽  
Author(s):  
Wenwu Zhu ◽  
Haibo Du ◽  
Yingying Cheng ◽  
Zhaobi Chu

2015 ◽  
Vol 17 (6) ◽  
pp. 2218-2228 ◽  
Author(s):  
Yuexia Jiang ◽  
Shihong Ding ◽  
Dean Zhao ◽  
Wei Ji

Author(s):  
Qixun Lan ◽  
Chunjiang Qian ◽  
Shihua Li

This paper considers the problem of finite-time disturbance observer (FTDO) design and the problem of FTDO based finite-time control for systems subject to nonvanishing disturbances. First of all, based on the homogeneous systems theory and saturation technique, a continuous FTDO design approach is proposed. Then, by using the proposed FTDO design approach, a FTDO is constructed to estimate the disturbances that exist in a rigid spacecraft system. Furthermore, based on a baseline finite-time control law and a feedforward compensation term produced by the FTDO, a composite controller is constructed for the rigid spacecraft system. It is shown that the proposed composite controller will render the rigid spacecraft track the desired attitude trajectory in a finite-time. Simulation results are included to demonstrate the effectiveness of the proposed control approach.


Author(s):  
Qingqiu Du ◽  
Haibo Du ◽  
Min Zhu ◽  
Bo Yu ◽  
Yingying Cheng ◽  
...  

Author(s):  
Mohammad Pourmahmood Aghababa ◽  
Hasan Pourmahmood Aghababa

Due to its useful applications in real world processes, synchronization of chaotic systems has attracted the attention of many researchers of mathematics, physics and engineering sciences. In practical situations, many chaotic systems are inevitably disturbed by model uncertainties and external disturbances. Furthermore, in practice, it is hard to determine the precise values of the chaotic systems’ parameters in advance. Besides, from a practical point of view, it is more desirable to achieve synchronization in a given finite time. In this paper, we investigate the problem of finite-time chaos synchronization between two different chaotic systems in the presence of model uncertainties, external disturbances and unknown parameters. Both autonomous and non-autonomous chaotic systems are taken into account. To tackle the unknown parameters, appropriate adaptation laws are proposed. Using the adaptation laws and finite-time control technique, an adaptive robust finite-time controller is designed to guarantee that the state trajectories slave system converge to the state trajectories of the master system in a given finite time. Some numerical simulations are presented to verify the robustness and usefulness of the proposed finite-time control technique.


Sign in / Sign up

Export Citation Format

Share Document