scholarly journals Cell Chromatography-Based Screening of the Active Components in Buyang Huanwu Decoction Promoting Axonal Regeneration

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Xiangli Yan ◽  
Shengxin Wang ◽  
Aiming Yu ◽  
Xiao Shen ◽  
Haozhen Zheng ◽  
...  

Buyang Huanwu decoction (BHD), a popular formulation prescribed in traditional Chinese medicine (TCM) for the treatment of ischemic stroke, has been reported to have a potential role in promoting axonal regeneration. The purpose of the study was to screen and identify bioactive compounds from BHD using live PC12 cells coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Using this approach, we successfully identified six bioactive components from BHD. These components have protective effects on oxygen-glucose deprivation/reperfusion (OGD/R) injury to PC12 cells. Furthermore, calycosin-7-D-glucoside (CG) and formononetin-7-O-β-D-glucoside (FG) could upregulate the protein expression of growth-associated protein 43 (GAP-43) and brain-derived neurotrophic factor (BDNF). This study suggests that living cells combined with HPLC-MS/MS can be used for the screening of active ingredients in TCMs.

2011 ◽  
Vol 26 (S2) ◽  
pp. 908-908
Author(s):  
H.R. Sadeghnia ◽  
S.H. Mousavi ◽  
Z. Tayarani-Najaran ◽  
M. Asghari

The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders.Nigella sativa L. and its active component, thymoquinone (TQ) have been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h and then subjected to SGD for 6 or 18 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2’,7’-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (p < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (p < 0.001). N. sativa (250 μg/ml, p < 0.01) and TQ (2.34, 4.68, 9.37 μM, p < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.


2021 ◽  
Vol 17 ◽  
Author(s):  
Xingxing Zhuang ◽  
Li Zhou ◽  
Renhua Miao ◽  
Shoudong Ni ◽  
Meng Li

Introduction:: Asari Radix et Rhizoma (ARR) and dried ginger (Zingiber officinalis) (DG) are often used together in drug preparations in traditional Chinese medicine (TCM) to treat respiratory diseases including cold, bronchitis and pneumonia. Previous studies suggested that ARR and/or DG may influence the pharmacokinetics of other herbal components. In the current study, we examined pharmacokinetic interactions between ARR and DG in rats after oral administration. Methods:: We developed a method based on ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously measure serum concentrations of two active components each in ARR (L-asarinin and sesamin) and DG (6-gingerol and 6-shogaol). Adult Sprague-Dawley rats were starved overnight, then given ARR extract, DO extract, or a co-decoction of ARR and DG by gastric gavage (6 g raw material per kg body weight; n = 6 per group). Blood samples were collected prior to drug administration and at the following times (h) afterward: 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0. Pharmacokinetic parameters were compared using Student’s t test for independent samples. Results:: A simple, rapid, sensitive analytical method has been developed to detect four bioactive components simultaneously in the ARR-DG herbal pair. Pharmacokinetic parameters including Cmax, Tmax, T1/2 and AUC(0~t) were calculated using the non-compartmental model with the DAS 2.0 pharmacokinetic software. For L-asarinin, Tmax was 2.00 ± 0.00 h in ARR animals and 1.67±0.26 h in ARR-DG animals (P<0.05), T1/2 was 8.58 ± 1.75 h in ARR and 11.93 ± 2.13 h in ARR-DG (P<0.05). For 6-gingerol, Cmax was 350.48 ± 23.85 ng/mL in DG animals and 300.21 ± 20.02 ng/mL in ARR-DG (P<0.01), Tmax was 2.83 ± 0.41 h in DG and 2.17 ± 0.41 h in ARR-DG (P<0.05) and AUC(0~t) was 1.93 ± 0.15 mg/mL•h in ARR and 1.70 ± 0.15 mg/mL•h in ARR-DG (P<0.05). For 6-shogaol, Cmax was 390.28 ± 26.02 ng/mL in DG animals and 455.63 ± 31.01 ng/mL in ARR-DG (P<0.01), Tmax was 2.93 ± 0.10 h in DG and 1.92 ± 0.10 h in ARR-DG (P<0.01), T1/2 was 3.74 ± 0.29 h in DG and 3.28 ± 0.22 h in ARR-DG (P<0.01), and AUC(0~t) was 2.15 ± 0.18 mg/mL•h in DG and 2.73 ± 0.15 mg/mL•h in ARR-DG (P<0.01). Conclusions:: Pharmacokinetic interations between ARR and DG decrease Tmax, increase T1/2 but do not affect overall bioavailability of L-asarinin in ARR. The interactions in ARR-DG decrease Cmax and Tmax but increase T1/2 and AUC(0~t) of 6-gingerol in DG. The interactions increase Cmax and AUC(0~t) but decrease Tmax and T1/2 of 6- shogaol in DG. Interactions in ARR-DG do not affect the pharmacokinetics of sesamin.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2609 ◽  
Author(s):  
Xiaoyan Xing ◽  
Zhonghao Sun ◽  
Meihua Yang ◽  
Nailiang Zhu ◽  
Junshan Yang ◽  
...  

In this study, an improved UPLC-MS (Ultra-high performance liquid chromatography-tandem mass spectrometry) method for simultaneously quantifying twelve major components belonging to two chemical types was developed and validated, and was applied to quantitatively compare the quality of sulfur-fumigated Astragali Radix of different durations and of the fresh reference sample. The results showed that the contents of triterpenes astragaloside III and astragaloside IV decreased moderately, while the flavonoids calycosin, formononetin, and 7,2′-dihydroxy-3′,4′-dimethoxyisoflavane decreased significantly. The corresponding flavonoid glycosides increased accordingly, which indicated the occurrence of chemical transformation of flavonoids and glycosides in the process of sulfur-fumigation. These transformations were further confirmed by the synthesis of flavonoid glycosides under simulated sulfur-fumigation circumstances. Furthermore, the sulfur-fumigated duration varied in proportion with the contents of compounds 7, 11, and 12. These results suggest that the established method was precise, accurate and sensitive enough for the global quality evaluation of sulfur-fumigated Astragali Radix. Further, sulfur-fumigation not only changes the proportions of bioactive components, but also causes chemical transformation in Astragali Radix.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3624 ◽  
Author(s):  
Guangyun Wang ◽  
Tiezheng Wang ◽  
Yuanyuan Zhang ◽  
Fang Li ◽  
Boyang Yu ◽  
...  

The neuroprotective role of schizandrin (SA) in cerebral ischemia-reperfusion (I/R) was recently highlighted. However, whether SA plays a regulatory role on autophagy in cerebral I/R injury is still unclear. This study aimed to explore whether the neuroprotective mechanisms of SA were linked to its regulation of AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/autophagy pathway in vivo and in vitro. The present study confirmed that SA significantly improved oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced PC12 cells injury. The results of immunoblotting and confocal microscope showed that SA decreased autophagy in OGD/R-injured PC12 cells, which was reflected by the decreased Beclin-1 and LC3-II expression, autophagy flux level, and LC3 puncta formation. In addition, the autophagy inducer rapamycin partially prevented the effects of SA on cell viability and autophagy after OGD/R, whereas the autophagy inhibitor 3-methyladenine (3-MA) exerted the opposite effect. The results of Western blotting showed that SA markedly decreased the phosphorylation of AMPK (p-AMPK), whereas the phosphor-mTOR (p-mTOR) levels increased in the presence of OGD/R insult. Furthermore, pretreatment with the AMPK inducer AICAR partially reversed the protective effects and autophagy inhibition of SA. However, AMPK inhibitor Compound C pretreatment further promoted the inhibition of SA on autophagy induction and cell damage induced by OGD/R. Taken together, these findings demonstrate that SA protects against OGD/R insult by inhibiting autophagy through the regulation of the AMPK-mTOR pathway and that SA may have therapeutic value for protecting neurons from cerebral ischemia.


2019 ◽  
Vol 14 (10) ◽  
pp. 1934578X1988154
Author(s):  
Yanhong Gao ◽  
Rui Li ◽  
Hua Sun ◽  
Jianmei Li ◽  
Bing He ◽  
...  

Ischemic stroke is a leading cause of human death. The injury that is induced by oxygen-glucose deprivation/reperfusion in stroke remains unsolved. This study first investigated the effects of oroxylin A on oxygen-glucose deprivation/reperfusion-induced PC12 cells. This was performed by dividing the cells into a control group, an oxygen-glucose deprivation and reperfusion (OGD/R) group, a solvent control group, and experimental groups treated with different concentrations of oroxylin A. Cell viability was evaluated by Cell Counting Kit-8 assay. Relevant indicators of oxidant stress were detected by using the appropriate kits. Western blot was applied to detect the expressions of inflammatory cytokine and proteins of the signaling pathway. Oroxylin A pretreatment exerted anti-oxidative, anti-apoptotic, and anti-inflammatory effects in oxygen-glucose deprivation/reperfusion-induced PC12 cells, thus indicating it as a new avenue for stroke treatment and providing references for future studies.


Sign in / Sign up

Export Citation Format

Share Document