scholarly journals New Phase Transition Related to the Black Hole’s Topological Charge

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shan-Quan Lan ◽  
Gu-Qiang Li ◽  
Jie-Xiong Mo ◽  
Xiao-Bao Xu

The topological charge ϵ of AdS black hole is introduced by Tian et al. in their papers, where a complete thermodynamic first law is obtained. In this paper, we investigate a new phase transition related to the topological charge in Einstein-Maxwell theory. Firstly, we derive the explicit solutions corresponding to the divergence of specific heat Cϵ and determine the phase transition critical point. Secondly, the T-r curve and T-S curve are investigated and they exhibit an interesting van der Waals system’s behavior. Critical physical quantities are also obtained which are consistent with those derived from the specific heat analysis. Thirdly, a van der Waals system’s swallow tail behavior is observed when ϵ>ϵc in the F-T graph. What is more, the analytic phase transition coexistence lines are obtained by using the Maxwell equal area law and free energy analysis, the results of which are consistent with each other.

2020 ◽  
Vol 102 (13) ◽  
Author(s):  
B. P. Alho ◽  
P. O. Ribeiro ◽  
P. J. von Ranke ◽  
F. Guillou ◽  
Y. Mudryk ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shan-Quan Lan

Phase transition of RN-AdS black hole is investigated from a new perspective. Not only is the cosmological constant treated as pressure but also the spatial curvature of black hole is treated as topological charge ϵ. We obtain the extended thermodynamic first law from which the mass is naturally viewed as enthalpy rather than internal energy. In canonical ensemble with fixed topological charge and electric charge Q, interesting van der Waals like oscillatory behavior in T-S and P-V graphs and swallow tail behavior in G-T and G-P graphs is observed. By applying the Maxwell equal area law and analysing the Gibbs free energy, we obtain analytical phase transition coexistence curves which are consistent with each other. The phase diagram is four dimensional with T,P,Q,ϵ.


2009 ◽  
Vol 20 (02) ◽  
pp. 223-236
Author(s):  
FATIH YAŞAR ◽  
MEHMET DILAVER

We have studied the influence of the distribution of bimodal bonds on the phase transition in two-dimensional 8-state Potts model by the recently proposed Wang–Landau (WL) and the Swendsen–Wang (SW) algorithm. All simulations and measurements are done for r = 0.5. Physical quantities such as energy density and specific heat are evaluated at all temperatures. We have also obtained the probability distributions of the energy in order to monitor the transitions. We have observed that some cases of the periodically arranged bond distributions show a single peak, and some cases show double or triple peaks in the specific heat. Besides, it seems that the appearing of these peaks in the specific heat relates to a blocking procedure for periodicity. When the number of interaction pairs between the bimodal bonds is increased on the lattice with the blocking procedure, one can observe a single peak, otherwise, one can observe a double or triple peaks in the specific heat. From the point of view of simulation methods, the WL algorithm also works efficiently in the simulation of the system for a periodically arranged bond distribution as well as the SW algorithm.


2012 ◽  
Vol 26 (28) ◽  
pp. 1250183 ◽  
Author(s):  
VLADIMIR NAZAROV ◽  
RISHAT SHAFEEV

Theoretically, with the aid of a soliton model, the evolution of a new-phase nucleus near the first-order spin-reorientation phase transition in magnets has been investigated in an external magnetic field. The influence of an external field and one-dimensional defects of magnetic anisotropy on the dynamics of such nucleus has been demonstrated. The conditions for the localization of the new-phase nucleus in the region of the magnetic anisotropy defect and for its escape from the defect have been determined. The values of the critical fields which bring about the sample magnetization reversal have been identified and estimated.


Sign in / Sign up

Export Citation Format

Share Document