scholarly journals Effect of Silicone Oil on Dispersion and Low-Temperature Fracture Performance of Crumb Rubber Asphalt

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Nonde Lushinga ◽  
Liping Cao ◽  
Zejiao Dong

Low-temperature cracking is one of the major pavement distresses in cold regions. To reduce the prevalence of such cracks, crumb rubber modified asphalt (CRMA) has been applied for a long time. However, CRMA experiences compatibility and segregation problems with asphalt. Silicone oil has long been seen to improve compatibility and segregation problems of polymers in asphalt, but its benefits on low temperature performance of crumb rubber asphalt have not been explored. Furthermore, silicone oil can be obtained as virgin or recycled from industrial transformers; however, the recycled silicone oil’s influence on low-temperature crack performance of asphalt has also not been explored. Therefore, the purpose of this study was to investigate the effect of recycled silicone oil (SO) on dispersion and low-temperature fracture performance of crumb rubber asphalt. The fracture mechanics-based single-edge notch beam (SENB) test was performed at temperatures of −12°C, −18°C, and −24°C. In addition, fluorescence microscopy (FM), atomic force microscopy (AFM), and Fourier-transform infrared (FTIR) experiments were also conducted. Results show that the addition of SO to CRMA increases displacement, fracture energy, and fracture toughness at low temperature while it decreases stiffness which reduces cracking. In addition, AFM results show that surface roughness increases with the addition of SO which indicates that bonding of asphalt and rubber particles had also improved. FM also confirmed that dispersion of rubber particles had improved with addition of silicone oil. FTIR results revealed that asphalt samples with SO treatment were hydrophobic which potentially repels water ingress and delays the freezing of asphalt. Lastly, statistical analysis revealed that the influence of silicone oil on low-temperature performance of rubber asphalt was significant. Therefore, the study concluded that fracture cracking resistance is improved by addition of silicone oil to crumb rubber asphalt.

2014 ◽  
Vol 505-506 ◽  
pp. 35-38 ◽  
Author(s):  
Chun Mei Gao ◽  
Shuo Han ◽  
Shuang Chen ◽  
He Li

Conduct experimental study on low temperature performance about asphalt concrete with 6mm basalt fiber and without basalt, 6mm fibers whose dosage is 0.12%0.15% and 0.17%, test method is the indirect tensile test,test temperature is-10±0.5°C. The results show that basalt fiber improved the strength and failure strain of asphalt concrete in low temperature damage, reduced the failure stiffness,in which the maximum increased value of breaking strength is 3.41%, the maximum increased value of failure strain is 38.83%,and the maximum reduced value of failure stiffness is 25.52%,obviously improved low temperature cracking resistance of asphalt concrete;for low temperature performance, the optimum amount of value about 6mm basalt fiber is 0.15% .


2014 ◽  
Vol 587-589 ◽  
pp. 1332-1336
Author(s):  
Jun Qing Chen ◽  
Ai Jun Li ◽  
Mei Qian Jin ◽  
Min Nan Zheng ◽  
Wan Yi Yang

Prone to low temperature cracking of asphalt pavement problems in cold areas, testing BBR on 70# base asphalt and 4 kinds of different dosage of SBS modified asphalt, testing TSRST on their mixture to appraisal the low temperature performance of SBS modified asphalt mixture. Results show that compared with the temperature stress of internal cracks of base asphalt and SBS modified asphalt mixture not rise significantly. But the stress of SBS asphalt mixture growing slow and the temperature of cracking reduce obviously; it means the low temperature performance improved. This shows that SBS improves the toughness and reduced the modulus of asphalt mixture in low temperature, rather than increasing the tensile strength of mixture specimens.


2021 ◽  
Vol 13 (7) ◽  
pp. 4039
Author(s):  
Sara A. Alattieh ◽  
Ghazi G. Al-Khateeb ◽  
Waleed Zeiada

Fatigue cracking and low-temperature cracking are two major distresses that occur in asphalt pavements. Fatigue cracking is a load-associated distress caused by the tensile stresses at the bottom/top of the asphalt concrete (AC) layer due to repeated traffic loading. On the other hand, low-temperature cracking occurs when tensile stresses built up with in the AC layer at low temperatures exceed the tensile strength of that layer. In this study, the performance of date seeds oil bio-modified asphalt binders (DSO-BMB) is evaluated against fatigue and low-temperature cracking. The DSO-BMBs are prepared using volume ratios of 1.5, 2.5, 3.5, 4.5, and 5.5% date seeds oil-to-asphalt binder. The base asphalt binder used in the study is a 60/70-penetration grade with a Superpave performance grade (PG) of PG 64–16. The dynamic shear rheometer (DSR) standard test was used to assess the fatigue performance of the bio-modified binders (BMBs), while the bending beam rheometer (BBR) test was used to test the BMBs for low-temperature performance. In addition, the DSR linear amplitude sweep (LAS) test was used to evaluate the fatigue tolerance behavior of the DSO-BMBs. The analysis and results of the study showed that the bio-oil enhanced the low-temperature performance. The low PG grade improved from −16 °C for the control asphalt binder to −28 °C for the BMB. Additionally, the fatigue resistance of the BMBs was improved as illustrated by the damage–characteristic curves of the modified asphalt binders from the visco-elastic continuum damage (VECD) analysis and the increase in the number of cycles to fatigue failure (Nf).


Author(s):  
Lihui Sun ◽  
William G. Buttlar ◽  
Behzad Behnia ◽  
Henrique Reis

Low-temperature cracking is a major form of distress in asphalt concrete pavements located in cold regions. A review of the background and fundamental aspects of the Acoustic Emission (AE) based approach with a brief overview of its application to estimate low-temperature performance of unaged, short-term, and long-term aged binders as well as asphalt concrete materials are presented. A comparison of the cracking temperatures estimated using the traditional rheological-based method and the embrittlement temperatures obtained using the proposed AE-based method is presented and discussed. In addition, embrittlement temperatures of asphalt concrete samples extracted from field cores are also presented and discussed. Results indicate that the AE-based method is faster and more accurate than the traditionally used methods. Moreover, results suggest that AE could be considered as a viable rapid, inexpensive, yet precise characterization approach for pavement materials, which could be effectively used towards enhancing pavement sustainability and resiliency.


2010 ◽  
Vol 168-170 ◽  
pp. 2507-2512
Author(s):  
Cai Li Zhang ◽  
Lian Yu Wei ◽  
Qing Ying Meng

To address Superpave graded and AC graded asphalt mixture, bending test at low temperature and thermal stress restrained sample tests are used respectively to evaluate the low temperature performance of asphalt mixture. Meanwhile, contrast analysis of the two test methods and the low temperature performance of two asphalt mixture are studied, too. The results show that Superpave method can effectively improve low temperature perfomance of asphalt mixture. In the thermal stress restrained sample tests, freezing temperature and transition point temperature can evaluate the low temperature cracking resistance of Superpave asphalt mixture well. In bending test at low temperature, bending strain energy density should be considered as evaluation index to the characterization for low temperature performance of asphalt mixture. That also closely meets the result of the rmal stress restrained sample tests.


Alloy Digest ◽  
2004 ◽  
Vol 53 (5) ◽  

Abstract Supermet 2205 is a manual metal arc (MMA) electrode with enhanced chromium, molybdenum, and nitrogen levels. It is used for welding standard 22% Cr duplex austenitic/ferritic stainless steels. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on low temperature performance as well as joining. Filing Code: SS-903. Producer or source: Metrode Products Ltd.


Sign in / Sign up

Export Citation Format

Share Document