scholarly journals Modeling of Flocculation and Sedimentation Using Population Balance Equation

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhipeng Shi ◽  
Genguang Zhang ◽  
Yuzhuo Zhang ◽  
Tingting He ◽  
Guoliang Pei

Flocculation is a special phenomenon for fine sediment or silt in reservoirs and estuaries. Flocculation usually results in changes of size, morphology, and settling velocity of sediment particles and finally changes of bed topography of reservoirs and estuaries. The process of flocculation and sedimentation was simulated based on population balance modeling (PBM) and computational fluid dynamics (CFD); the changes of particle or floc size and their settling velocities over time were examined. The results showed that flocculation is a dynamic and nonlinear process containing aggregation, breakage, reaggregation, and rebreakage between particles, microflocs, and macroflocs. Furthermore, the visual process of flocculation and sedimentation was directly created by the simulation results and is in good agreement with the results of the previous experiments.

Author(s):  
Xinliang Liu ◽  
Hailiang Yin ◽  
Jian Zhao ◽  
Ziqi Guo ◽  
Zhen Liu ◽  
...  

Abstract Coagulation kinetics and floc properties are of great fundamental and practical importance in the field of water treatment. To investigate the performance of Fe(VI) and Fe(III) salt on particle coagulation, Malvern Mastersizer 2000 was employed to continuously and simultaneously monitor the kaolin floc size and structure change, and population balance modeling was used to investigate the coagulation mechanism. The results show dosage increase had positive effect on collision efficiency and floc strength and negative effect on restructure rate. Low shear rate resulted in higher collision efficiency and stronger floc. Low water temperature had a pronounced detrimental effect on coagulation kinetics. Temperature increase showed the most significant positive effect on collision efficiency, floc strength and restructure rate. The optimum pH zone for the coagulation was found to be between 6 and 8. Further pH increase lowered the collision efficiency and floc strength and increased the restructure rate. FeCl3 resulted in a larger ratio of the mass to volume of kaolin flocs (compactness) than those induced by ferrate.


2019 ◽  
Vol 30 (09) ◽  
pp. 1950071 ◽  
Author(s):  
Keivan Tavakoli ◽  
Hossien Montaseri ◽  
Pourya Omidvar ◽  
Stefania Evangelista

In this work, the mechanism of sediment transport in a U-shaped channel with a lateral intake is investigated experimentally and numerically, together with the processes of sediment entry into the intake itself and formation of bed topography. Dry sediment is injected into a steady flow in a rigid channel with a bend and sediment particles are traced in time. In order to validate the numerical model, the three components of the flow velocity, as well as the sediment path in time and the diverted sediment ratios, are measured experimentally. A numerical Discrete Phase Model (DPM) is then applied to study the effect of the intake position and diversion angle on the sediment transport mechanism in the bend. The DPM has, in fact, the capability of specifying for each particle its position relative to a reference time and space and, thereby, it is used in this study to analyze the phenomenon evolution and determine the sediment particles diverted into the intake. The comparison between the experimental data and the DPM numerical results shows a good agreement. In order to investigate the mechanism of sediment transport and to evaluate the percentage of the diverted sediments, a parametric study is then conducted through the numerical model, with different positions of the outer bend of the channel, diversion angles of the lateral intake and diversion discharge ratios. The results show that the mechanism of sediment entry into the lateral intake is affected by the diversion discharge ratio. For low discharge ratios, the mechanism of sediment entry to the lateral intake only consists of continuous entrance from the upstream edge of the intake. With the increase of the discharge ratio, it consists of a continuous entrance from the downstream edge and a periodic entrance from the upstream edge of the intake. The DPM results show that, for all diversion discharge ratios, the minimum percentage of sediment entered into the lateral intake corresponds to the position of 120∘ and diversion angle equal to 50∘.


2019 ◽  
Vol 19 (5) ◽  
pp. 1422-1428
Author(s):  
Zhongfan Zhu

Abstract A simple formula is developed to relate the size and settling velocity of cohesive sediment flocs in both the viscous and inertial settling ranges. This formula maintains the same basic structure as the existing formula but is amended to incorporate the fact that the flocculated sediment has an internal fractal architecture and is composed of different-sized primary particles. The input parameters needed for calculating the settling velocity include the median size and size distribution of the primary particles, the fractal dimension of the floc, the density of the sediment, and two calibrated coefficients that incorporate the effects of floc shape, permeability, and flow separation on drag. The proposed formula is compared with four data sets of settling velocity–floc size collected from the published literature, and a good agreement between the model and these data can be found.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 122
Author(s):  
Seyed Soheil Mansouri ◽  
Heiko Briesen ◽  
Krist V. Gernaey ◽  
Ingmar Nopens

Population Balance Modeling (PBM) is a powerful modeling framework that allows the prediction of the dynamics of distributed properties of a population of individuals at the mesoscale [...]


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3523
Author(s):  
Radosław Krzosa ◽  
Łukasz Makowski ◽  
Wojciech Orciuch ◽  
Radosław Adamek

The deagglomeration of titanium-dioxide powder in water suspension performed in a stirring tank was investigated. Owing to the widespread applications of the deagglomeration process and titanium dioxide powder, new, more efficient devices and methods of predicting the process result are highly needed. A brief literature review of the application process, the device used, and process mechanism is presented herein. In the experiments, deagglomeration of the titanium dioxide suspension was performed. The change in particle size distribution in time was investigated for different impeller geometries and rotational speeds. The modification of impeller geometry allowed the improvement of the process of solid particle breakage. In the modelling part, numerical simulations of the chosen impeller geometries were performed using computational-fluid-dynamics (CFD) methods whereby the flow field, hydrodynamic stresses, and other useful parameters were calculated. Finally, based on the simulation results, the population-balance with a mechanistic model of suspension flow was developed. Model predictions of the change in particle size showed good agreement with the experimental data. Using the presented method in the process design allowed the prediction of the product size and the comparison of the efficiency of different impeller geometries.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950008
Author(s):  
Binwen Wang ◽  
Xueling Fan

Flutter is an aeroelastic phenomenon that may cause severe damage to aircraft. Traditional flutter evaluation methods have many disadvantages (e.g., complex, costly and time-consuming) which could be overcome by ground flutter test technique. In this study, an unsteady aerodynamic model is obtained using computational fluid dynamics (CFD) code according to the procedure of frequency domain aerodynamic calculation. Then, the genetic algorithm (GA) method is adopted to optimize interpolation points for both excitation and response. Furthermore, the minimum-state method is utilized for rational fitting so as to establish an aerodynamic model in time domain. The aerodynamic force is simulated through exciters and the precision of simulation is guaranteed by multi-input and multi-output robust controller. Finally, ground flutter simulation test system is employed to acquire the flutter boundary through response under a range of air speeds. A good agreement is observed for both velocity and frequency of flutter between the test and modeling results.


Author(s):  
Qiangqiang Huang ◽  
Xinqian Zheng ◽  
Aolin Wang

Air often flows into compressors with inlet prewhirl, because it will obtain a circumferential component of velocity via inlet distortion or swirl generators such as inlet guide vanes. A lot of research has shown that inlet prewhirl does influence the characteristics of components, but the change of the matching relation between the components caused by inlet prewhirl is still unclear. This paper investigates the influence of inlet prewhirl on the matching of the impeller and the diffuser and proposes a flow control method to cure mismatching. The approach combines steady three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations with theoretical analysis and modeling. The result shows that a compressor whose impeller and diffuser match well at zero prewhirl will go to mismatching at non-zero prewhirl. The diffuser throat gets too large to match the impeller at positive prewhirl and gets too small for matching at negative prewhirl. The choking mass flow of the impeller is more sensitive to inlet prewhirl than that of the diffuser, which is the main reason for the mismatching. To cure the mismatching via adjusting the diffuser vanes stagger angle, a one-dimensional method based on incidence matching has been proposed to yield a control schedule for adjusting the diffuser. The optimal stagger angle predicted by analytical method has good agreement with that predicted by computational fluid dynamics (CFD). The compressor is able to operate efficiently in a much broader flow range with the control schedule. The flow range, where the efficiency is above 80%, of the datum compressor and the compressor only employing inlet prewhirl and no control are just 25.3% and 31.8%, respectively. For the compressor following the control schedule, the flow range is improved up to 46.5%. This paper also provides the perspective of components matching to think about inlet distortion.


Author(s):  
Dewen Liu ◽  
Kai Lu ◽  
Shusen Liu ◽  
Yan Wu ◽  
Shuzhan Bai

From the aspect of reducing the risk of crystallization on nozzle surface, a new design of nozzle protective cover was to solve the problem in selective catalytic reduction (SCR) urea injection system. The simulation calculation and experimental verification methods were used to compare different schemes. The results show that reducing the height of nozzle holder can reduce the vortex currents near nozzle surface and effectively reduce the risk of crystallization on the nozzle surface. It is proposed to install a protective cover in the nozzle holder under the scheme of reducing the height of nozzle holder, which can further eliminate the vortex. Simulation and test results demonstrate good agreement under the rated running condition. The scheme of adding a protective cover in the nozzle holder shows the least crystallization risk by computational fluid dynamics (CFD) method. The crystallization cycle test shows that, after the height of nozzle holder is reduced, the risk of crystallization on the nozzle surface is reduced correspondingly. The addition of a protective cover in the nozzle holder solves the problem of crystallization on the nozzle surface, which provides a new method for anti-crystallization design.


Sign in / Sign up

Export Citation Format

Share Document