scholarly journals Environmental Efficiency Evaluation of Chinese Industry Systems by Using Non-Cooperative Two-Stage DEA Model

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiao Shi

In evaluating the environmental efficiency analysis of Chinese industry systems, data envelopment analysis (DEA) has been a popular method. However, the production system is often treated as a black box in conventional DEA models. This study considers the internal structure of the production system to evaluate the environmental efficiency, which is characterized as a two-stage system, i.e., production subsystem and pollutant treatment subsystem. And, in reality, some subsystems in two-stage production systems are not equally important, and this kind of two-stage systems usually has the feature that one subsystem dominates the other. Thus, we consider the leader and follower relationship in the environmental efficiency analysis. A new non-cooperative two-stage DEA model considering undesirable intermediates and undesirable outputs is proposed to calculate the environmental efficiency. The proposed method is then applied to 30 regional industry systems of China in the year 2010. Thus, each DMU’s environmental efficiencies for the overall system as well as both subsystems could be analyzed by the proposed approach. More accurate information could be provided for environmental management.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7028
Author(s):  
Qingyou Yan ◽  
Fei Zhao ◽  
Xu Wang ◽  
Tomas Balezentis

This paper suggests that the efficiency of a system (decision-making unit) and its subsystem cannot be properly measured using a two-stage data envelopment analysis (DEA) model either in cooperative or non-cooperative evaluation. Indeed, the existing methods subjectively determine the status of the subsystems in the whole system. The two-stage DEA models, either cooperative game or non-cooperative game, are used to analyze the environmental efficiency. However, when the actual relationship between the two subsystems is inconsistent with the subjective relationship assumptions, the overall efficiency of the system and the efficiency of each subsystem will be biased. The conventional two-stage DEA models require predetermining the relationship between the subsystems within the system based on the subjective judgment of the decision-maker. Based on this, this paper proposes a three-step method to solve the two-stage DEA. First, the position relation among subsystems is determined according to the optimal weights through the model. According to the status relationship among subsystems, the decision units are grouped, and the two-stage DEA model of cooperative game or non-cooperative game is used to analyze the efficiency in each group. This method reduces the subjectivity of decision making and analyzes the efficiency of each decision unit applying the most appropriate two-stage DEA model to find the source of inefficiency. Finally, this paper verifies the rationality and validity of the method by analyzing the water use efficiency of industrial systems in China. It is found that most regions in China value economic development more than environmental protection (as evidenced by the DEA weights). What is more, the method proposed by the paper can be generalized for any two-stage DEA problem.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 565 ◽  
Author(s):  
Krmac ◽  
Djordjević

Supply Chain Management (SCM) represents an example of a complex multi-stage system. The SCM involves and connects different activities, from customer’s orders to received services, all with the aim of satisfying customers. The evaluation of a particular SCM is a complex problem because of the internally linked hierarchical activities and multiple entities. In this paper, the introduction of a non-radial DEA (Data Envelopment Analysis) model for the evaluation of different components of SCM, primarily in terms of sustainability, is the main contribution. However, in order to confirm the novelty and benefits of this new model in the field of SCM, a literature review of past applications of DEA-based models and methods are also presented. The non-radial DEA model was applied for the selection and evaluation of the environmental efficiency of suppliers considering undesirable inputs and outputs resulting in a better ranking of suppliers. Via perturbation of the data used, behavior, as well as the benefits and weaknesses of the introduced model are presented through sensitivity analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao Shi

Traditional data envelopment analysis (DEA) models find the most desirable weights for each decision-making unit (DMU) in order to estimate the highest efficiency score as possible. These efficiency scores are then used for ranking the DMUs. The main drawback is that the efficiency scores based on weights obtained from the standard DEA models ignore other feasible weights; this is due to the fact that DEA may have multiple solutions for each DMU. To overcome this problem, Salo and Punkka (2011) deemed each DMU as a “Black Box” and developed models to obtain the efficiency bounds for each DMU over sets of all its feasible weights. In many real world applications, there are DMUs that have a two-stage production system. In this paper, we extend the Salo and Punkka’s (2011) model to a more common and practical case considering the two-stage production structure. The proposed approach calculates each DMU’s efficiency bounds for the overall system as well as efficiency bounds for each subsystem/substage. An application for nonlife insurance companies has been discussed to illustrate the applicability of the proposed approach and show the usefulness of this method.


Author(s):  
Amir Hossein Yadollahi ◽  
Reza Kazemi Matin

The network data envelopment analysis (NDEA) technique has been recently developed to measure the relative efficiency of complex production systems. NDEA models provide more meaningful and informative results in comparison to the conventional black-box DEA approach that ignores the operations of the component processes. Regarding the centralized decision-making systems, normal management imposes common resource constraints to maximize produced outputs and minimize consumed inputs. The present study seeks to introduce new centralized resource allocation models in two-stage network production systems. This intra-organizational perspective also provides the possibility of closing down some of the existing units to improve system efficiency. To do so, three scenarios of centralized DEA models are introduced to take advantage of this possibility. A simple numerical example is used for illustration purposes. An empirical application of the proposed approach to the twenty branches of a university is also presented to show the applicability of the new approach.


2020 ◽  
Vol 54 (6) ◽  
pp. 1657-1671
Author(s):  
Samaneh Esfidani ◽  
Farhad Hosseinzadeh Lotfi ◽  
Shabnam Razavyan ◽  
Ali Ebrahimnejad

Two-stage production systems are often encountered in many real applications where the production process is divided into two processes. In contrast to the conventional data envelopment analysis (DEA) models, two-stage DEA models take the operations of the internal processes into account. A number of studies have used two-stage DEA models in order to evaluate the performance of decision making units (DMUs) having a network structure. In this paper, we use a non-radial DEA model called the network slacks-based measure (NSBM) model to measure the efficiency of a system with a multi-period two-stage structure. Then we describe the properties of the proposed model in details. Moreover, we shall decompose the overall efficiency of the system over a number of time periods as a weighted average of the efficiency in each period. The efficiency of the stages, in respect to the entire periods shall be decomposed in terms of the weighted average efficiency of the stages in each period. Finally, the real data of Mellat bank branches in Tehran extracted from extant literature is used to illustrate the proposed approach.


2016 ◽  
Vol 33 (01) ◽  
pp. 1650002
Author(s):  
Roza Azizi ◽  
Reza Kazemi Matin

In this paper, we propose a new approach to rank two-stage production systems in data envelopment analysis based on performance of the stages. To do this, a method is devised to compare the stages performance of a special two-stage unit with the corresponding stages performance of other units. The relative performance of two-stage production units is investigated under new definitions of weak and strong relations and a new ranking criterion is introduced as the result. The most important features of our method is the ability to achieve ranking intervals for two-stage production units based on the introduced relations over all feasible weights, as well as the ability to generate accurate information about sources of inefficiency of two-stage production units.


Author(s):  
Mohammad Sajjad Shahbazifar ◽  
Reza Kazemi Matin ◽  
Mohsen Khounsiavash ◽  
Fereshteh Koushki

Data envelopment analysis (DEA) is a useful mathematical tool for evaluating the performance of production units and ranking their relative efficiency. In many real-world applications, production units belong to several separate groups and also consist of several sub-units. In this paper, we introduce a new method of evaluating group efficiency of two-stage production systems. To this end, some new DEA models are introduced for evaluating and ranking groups of production systems based on the average and weakest group performance criteria. Some numerical examples, including an empirical application in the banking industry, are also provided for illustration.


Sign in / Sign up

Export Citation Format

Share Document