scholarly journals Improving Cognitive Function after Traumatic Brain Injury: A Clinical Trial on the Potential Use of the Semi-Immersive Virtual Reality

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Rosaria De Luca ◽  
Maria Grazia Maggio ◽  
Giuseppa Maresca ◽  
Desiree Latella ◽  
Antonino Cannavò ◽  
...  

Traumatic brain injury (TBI) is the most common cause of long-term disability and death among young adults, and it represents an enormous socioeconomic and healthcare burden. Our purpose is to evaluate the effects of a virtual reality training with BTs-Nirvana (BTs-N) on the recovery of cognitive functions in TBI subjects, using the interactive semi-immersive program. One hundred patients with TBI were enrolled in this study and randomized into either the Traditional Cognitive Rehabilitation Group (TCRG: n=50) or the Virtual Reality Training Group (VRTG: n=50). The VRTG underwent a VRT with BTs-N, whereas the TCRG received a standard cognitive treatment. Each treatment session lasted 60 minutes and was repeated three times a week for 8 weeks. All of the patients were evaluated by a specific psychometric battery before (T0) and immediately (T1) after the end of the training. VRTG and TCRG had a significant improvement in cognitive functioning and in mood, but only VRTG presented with a significant increase in cognitive flexibility and shifting skills and in selective attention. In conclusion, our results suggest that VR may be a useful and effective approach for the rehabilitation of patients with TBI, leading to better cognitive and behavioral outcomes.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Azrulhizam Shapi’i ◽  
Nor Azan Mat Zin ◽  
Ahmed Mohammed Elaklouk

Brain injury such as traumatic brain injury (TBI) and stroke is the major cause of long-term disabilities in many countries. The increasing rate of brain damaged victims and the heterogeneity of impairments decrease rehabilitation effectiveness and competence resulting in higher cost of rehabilitation treatment. On the other hand, traditional rehabilitation exercises are boring, thus leading patients to neglect the prescribed exercises required for recovery. Therefore, we propose game-based approach to address these problems. This paper presents a rehabilitation gaming system (RGS) for cognitive rehabilitation. The RGS is developed based on a proposed conceptual framework which has also been presented in this paper.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0161053 ◽  
Author(s):  
Natalia M. Grin’kina ◽  
Yang Li ◽  
Margalit Haber ◽  
Michael Sangobowale ◽  
Elena Nikulina ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Rosaria De Luca ◽  
Simona Portaro ◽  
Maria Le Cause ◽  
Carmen De Domenico ◽  
Maria Grazia Maggio ◽  
...  

2018 ◽  
Vol 96 (4) ◽  
pp. 391-406 ◽  
Author(s):  
Dema Najem ◽  
Kerry Rennie ◽  
Maria Ribecco-Lutkiewicz ◽  
Dao Ly ◽  
Julie Haukenfrers ◽  
...  

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide. Due to its high incidence rate and often long-term sequelae, TBI contributes significantly to increasing costs of health care expenditures annually. Unfortunately, advances in the field have been stifled by patient and injury heterogeneity that pose a major challenge in TBI prevention, diagnosis, and treatment. In this review, we briefly discuss the causes of TBI, followed by its prevalence, classification, and pathophysiology. The current imaging detection methods and animal models used to study brain injury are examined. We discuss the potential use of molecular markers in detecting and monitoring the progression of TBI, with particular emphasis on microRNAs as a novel class of molecular modulators of injury and its repair in the neural tissue.


2008 ◽  
Vol 108 (5) ◽  
pp. 873-881 ◽  
Author(s):  
Stacy L. Sell ◽  
Marcela A. Avila ◽  
Guangxiang Yu ◽  
Leoncio Vergara ◽  
Donald S. Prough ◽  
...  

Background : Resuscitation with hypertonic saline or hypertonic saline plus l-arginine acutely improves cerebral blood flow after traumatic brain injury (TBI) followed by hemorrhagic hypotension. The authors investigated whether hypertonic saline or hypertonic l-arginine would improve long-term neuronal survival and behavioral outcomes 15 days after TBI and hemorrhagic hypotension. Methods : Mean arterial pressure, arterial blood gases, pH, plasma glucose, hematocrit, and hemoglobin were measured in male Sprague-Dawley rats before and after moderate (2.0 atm) fluid percussion TBI. Rats were assigned to one of six groups: (1) sham TBI, (2) hemorrhage only, (3) TBI only, (4) TBI plus hemorrhage and resuscitation with 0.9% saline, (5) TBI plus hemorrhage and resuscitation with hypertonic saline (7.5%), or (6) TBI plus hemorrhage and resuscitation with l-arginine (100 mg/kg) in hypertonic saline. On postinjury days 1-5, vestibulomotor function was assessed using beam balance and beam walking tasks. On postinjury days 11-15, spatial memory function was assessed using the Morris water maze. After behavioral testing, neuronal counting was performed bilaterally on specific hippocampal regions. Results : Groups receiving hypertonic saline (P < 0.05, day 15 vs. day 11) or hypertonic l-arginine (P < 0.05, days 13-15 vs. day 11) showed improved performance over time on the Morris water maze, as well as significantly improved neuronal survival in the contralateral hippocampus (P < 0.05, hypertonic saline or hypertonic l-arginine vs. normal saline) compared with untreated TBI or normal saline-treated TBI plus hemorrhage groups. Conclusions : Hypertonic saline and hypertonic l-arginine were both effective at promoting long-term neuronal survival and behavioral recovery. The slightly earlier improvement in Morris water maze performance in the hypertonic l-arginine group warrants further studies to determine whether higher doses of l-arginine provide additional improvement. This study supports the therapeutic benefits of hypertonic resuscitation after TBI plus hemorrhagic hypotension.


2021 ◽  
Vol 22 (2) ◽  
pp. 907
Author(s):  
Saef Izzy ◽  
Alexander Brown-Whalen ◽  
Taha Yahya ◽  
Aliyah Sarro-Schwartz ◽  
Gina Jin ◽  
...  

Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.


2019 ◽  
Vol 61 ◽  
pp. 1-4 ◽  
Author(s):  
Maria Grazia Maggio ◽  
Rosaria De Luca ◽  
Francesco Molonia ◽  
Bruno Porcari ◽  
Massimo Destro ◽  
...  

2017 ◽  
Vol 31 (9) ◽  
pp. 800-813 ◽  
Author(s):  
Valentina Galetto ◽  
Katiuscia Sacco

Background. Cognitive deficits are among the most disabling consequences of traumatic brain injury (TBI), leading to long-term outcomes and interfering with the individual’s recovery. One of the most effective ways to reduce the impact of cognitive disturbance in everyday life is cognitive rehabilitation, which is based on the principles of brain neuroplasticity and restoration. Although there are many studies in the literature focusing on the effectiveness of cognitive interventions in reducing cognitive deficits following TBI, only a few of them focus on neural modifications induced by cognitive treatment. The use of neuroimaging or neurophysiological measures to evaluate brain changes induced by cognitive rehabilitation may have relevant clinical implications, since they could add individualized elements to cognitive assessment. Nevertheless, there are no review studies in the literature investigating neuroplastic changes induced by cognitive training in TBI individuals. Objective. Due to lack of data, the goal of this article is to review what is currently known on the cerebral modifications following rehabilitation programs in chronic TBI. Methods. Studies investigating both the functional and structural neural modifications induced by cognitive training in TBI subjects were identified from the results of database searches. Forty-five published articles were initially selected. Of these, 34 were excluded because they did not meet the inclusion criteria. Results. Eleven studies were found that focused solely on the functional and neurophysiological changes induced by cognitive rehabilitation. Conclusions. Outcomes showed that cerebral activation may be significantly modified by cognitive rehabilitation, in spite of the severity of the injury.


Sign in / Sign up

Export Citation Format

Share Document