scholarly journals Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production

2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Sinval F. Sousa ◽  
Breno L. Souza ◽  
Cristiane L. Barros ◽  
Antonio Otavio T. Patrocinio

The large and continuous use of fossil fuels as a primary energy source has led to several environmental problems, such as the increase of the greenhouse effect. In order to minimize these problems, attention has been drawn to renewable energy production. Solar energy is an attractive candidate as renewable source due to its abundance and availability. For this, it is necessary to develop devices able to absorb sunlight and convert it into fuels or electricity in a economical, technical and sustainable way. The so-called artificial photosynthesis has called the attention of researchers due to the possibility of using solar photocatalysts in converting water and CO2 into fuels. This manuscript presents a review of the recent developments of hybrid systems based on molecular photocatalysts immobilized on semiconductor surfaces for solar fuel production through water oxidation and CO2 reduction and also discusses the current challenges for the potential application of these photocatalyst systems.

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 611 ◽  
Author(s):  
Anita Haeussler ◽  
Stéphane Abanades ◽  
Julien Jouannaux ◽  
Anne Julbe

Due to the requirement to develop carbon-free energy, solar energy conversion into chemical energy carriers is a promising solution. Thermochemical fuel production cycles are particularly interesting because they can convert carbon dioxide or water into CO or H2 with concentrated solar energy as a high-temperature process heat source. This process further valorizes and upgrades carbon dioxide into valuable and storable fuels. Development of redox active catalysts is the key challenge for the success of thermochemical cycles for solar-driven H2O and CO2 splitting. Ultimately, the achievement of economically viable solar fuel production relies on increasing the attainable solar-to-fuel energy conversion efficiency. This necessitates the discovery of novel redox-active and thermally-stable materials able to split H2O and CO2 with both high-fuel productivities and chemical conversion rates. Perovskites have recently emerged as promising reactive materials for this application as they feature high non-stoichiometric oxygen exchange capacities and diffusion rates while maintaining their crystallographic structure during cycling over a wide range of operating conditions and reduction extents. This paper provides an overview of the best performing perovskite formulations considered in recent studies, with special focus on their non-stoichiometry extent, their ability to produce solar fuel with high yield and performance stability, and the different methods developed to study the reaction kinetics.


2021 ◽  
Author(s):  
Cherilyn Dignan

Canada, as one of the largest producers and consumers of fossil fuels per capita on the planet, is attempting to reduce greenhouse gas (GHG) emissions. In order to accomplish this, fuel alternatives, such as biofuel, are required. Accordingly, this study uses LCA methodology to quantify the GHG impact of a unique biofuel production model. This unique model produces biodiesel (BD), acetone, butanol and ethanol (ABE) from microalgae and assesses the process GHG impact against other microalgal BD production processes. This study’s microalgal BD and ABE production process produces 76 kgCO2e per functional unit, whereas other comparable microalgal BD production processes produce between 3.7 and 85 kgCO2e. Overall, this study clarifies that without the development of versatile infrastructure to accommodate biofuel production, LCA studies will continue to find renewable fuel production processes net GHG positive for the simple reason that fossil resources are still the primary energy source.


2017 ◽  
Vol 21 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Jan Barwicki ◽  
Maciej Kuboń ◽  
Andrzej Marczuk

AbstractPhotovoltaic systems are very efficient concerning proper utilization of solar radiation. However, the nanotechnology solution can replace the photovoltaic by the use of new production technology to lower the price of solar cells to one tenth. Sun provides nearly unlimited energy resource, but existing solar energy harvesting technologies are quite expensive and cannot compete with fossil fuels. The central part of Poland, which represents about 50 percent of the area, gives solar radiation at the level of 1000 kWh·m−2/year. Other new developments, which can help improve existing efficiency of solar systems are: diatoms utilization, artificial photosynthesis, nanoleaves and rotation solar towers.


Author(s):  
Mikhail Vasiliev ◽  
Mohammad Nur-E-Alam ◽  
Kamal Alameh

We present a review of the current state of the field for a rapidly evolving group of technologies related to solar energy harvesting in built environments. In particular, we focus on recent achievements in enabling the widespread distributed generation of electric energy assisted by energy capture in semi-transparent or even optically clear glazing systems and building wall areas. Whilst concentrating on the cutting-edge recent results achieved in the integration of traditional photovoltaic device types into novel concentrator-type windows and glazings, we compare the main performance characteristics reported with these achievable using more conventional (opaque or semi-transparent) solar cell technologies. A critical overview of the current status and future application potential of multiple existing and emergent energy harvesting technologies for building integration is provided.


2021 ◽  
Author(s):  
Luisa Vargas Suarez ◽  
Jason Donev

<p>There are extensive conceptual difficulties in understanding a country’s energy story. Every country in the world uses some combination of energy production, imports, and exports energy to meet their society’s needs. Thermal inefficiencies converting primary energy into electricity further confuse the issues. A visualization using large, publicly available data can help illustrate these different energy perspectives. This data visualization helps clarify the following perspectives: Production, Imports, Exports, Total Primary Energy Supply (TPES), Total Final Consumption (TFC), and the conversion losses from turning TPES into TFC. TPES refers to the total amount of energy a country obtains directly from natural resources such as fossil fuels or wind. TFC refers to the addition of the all energy directly consumed by a user for an energy service such as electricity for lighting in a house. This paper discusses the interactive simulation that was built to allow users to explore the composition of a country’s energy production, imports and exports through the conversion into energy people consume. The simulation allows users to explore the energy stories for different countries, and how these change over the decades.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-2
Author(s):  
Junwang Tang ◽  
Songyuan Dai ◽  
Jawwad A. Darr

CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 852-873
Author(s):  
Luciana Sucupira ◽  
João Castro-Gomes

Reducing the use of fossil fuels and the generation of renewable energy have become extremely important in today. A climatic emergency is being experienced and society is suffering due to a high incidence of pollutants. For these reasons, energy harvesting emerges as an essential source of renewable energy, and it benefits from the advancement in the scope of solar and thermal energy which are widely abundant and usually wasted. It is an option to obtain energy without damaging the environment. Recently, energy harvesting devices, which produce electricity, have been attracting more and more attention due to the availability of new sources of energy, such as solar, thermal, wind and mechanical. This article looks at recent developments in capturing energy from the sun. This literature review was performed on research platforms and analyzes studies on solar and thermal energy capture carried out in the last four years. The methods of capturing solar energy were divided according to how they were applied in civil engineering works. The types of experiments carried out were the most diverse, and several options for capturing solar energy were obtained. The advantages and disadvantages of each method were demonstrated, as well as the need for further studies. The results showed that the materials added to the components obtained have a lot of advantages and could be used in different energy capture types, such as photovoltaic, thermoelectric generators, pyroelectricity and thermometrical. This demonstrates that the capture of solar energy is quite viable, and greater importance should be given to it, as the number of research is still small when compared to other renewable energies.


2013 ◽  
Vol 24 (2) ◽  
pp. 77-82 ◽  
Author(s):  
Sosten Ziuku ◽  
Edson L. Meyer

The installation of Building Integrated Photovoltaics (BIPV) has been increasing rapidly throughout the world, yet little, if at all, has been reported in South Africa. The country has abundant solar energy resource estimated to be between 4.5 and 6.5 kWh/m2/day, yet solar energy contributes less than 1% to the country’s energy mix. More than 90% of the country’s primary energy comes from fossil fuels leading to an unsustainable per capita carbon footprint of about 9 tCO2e. Previous research has shown that photovoltaics can significantly augment the constrained fossil fuel generated electricity supply. This paper discusses the practical application of photovoltaics as a building element in energy efficient residential housing. The study also aims to determine the feasibility of implementing BIPV systems in the residential sector in South Africa. An energy efficient solar house was designed using simulation software and constructed. Ordinary solar panels were integrated onto the north facing roof of the house. A data acquisition system that monitors meteorological conditions and BIPV output was installed. It was observed that elevated back of module temperatures reaching up to 75°C on sunny days decreased module efficiency by up to 20% in the afternoon. The temperature profiles reveal that BIPV products can significantly influence indoor heating and cooling loads. The research seeks to raise awareness among housing stakeholders and solar industry policy makers of the feasibility of BIPV in South Africa.


Sign in / Sign up

Export Citation Format

Share Document