scholarly journals The Lagrangian and Hamiltonian for the Two-Dimensional Mathews-Lakshmanan Oscillator

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Wang Guangbao ◽  
Ding Guangtao

The purpose of this paper is to illustrate the theory and methods of analytical mechanics that can be effectively applied to the research of some nonlinear nonconservative systems through the case study of two-dimensionally coupled Mathews-Lakshmanan oscillator (abbreviated as M-L oscillator). (1) According to the inverse problem method of Lagrangian mechanics, the Lagrangian and Hamiltonian function in the form of rectangular coordinates of the two-dimensional M-L oscillator is directly constructed from an integral of the two-dimensional M-L oscillators. (2) The Lagrange and Hamiltonian function in the form of polar coordinate was rewritten by using coordinate transformation. (3) By introducing the vector form variables, the two-dimensional M-L oscillator motion differential equation, the first integral, and the Lagrange function are written. Therefore, the two-dimensional M-L oscillator is directly extended to the three-dimensional case, and it is proved that the three-dimensional M-L oscillator can be reduced to the two-dimensional case. (4) The two direct integration methods were provided to solve the two-dimensional M-L oscillator by using polar coordinate Lagrangian and pointed out that the one-dimensional M-L oscillator is a special case of the two-dimensional M-L oscillator.

1997 ◽  
Vol 07 (07) ◽  
pp. 1451-1496 ◽  
Author(s):  
André Barbé

This paper considers three-dimensional coarse-graining invariant orbits for two-dimensional linear cellular automata over a finite field, as a nontrivial extension of the two-dimensional coarse-graining invariant orbits for one-dimensional CA that were studied in an earlier paper. These orbits can be found by solving a particular kind of recursive equations (renormalizing equations with rescaling term). The solution starts from some seed that has to be determined first. In contrast with the one-dimensional case, the seed has infinite support in most cases. The way for solving these equations is discussed by means of some examples. Three categories of problems (and solutions) can be distinguished (as opposed to only one in the one-dimensional case). Finally, the morphology of a few coarse-graining invariant orbits is discussed: Complex order (of quasiperiodic type) seems to emerge from random seeds as well as from seeds of simple order (for example, constant or periodic seeds).


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


1995 ◽  
Vol 291 ◽  
pp. 57-81 ◽  
Author(s):  
S. M. Churilov ◽  
I. G. Shukhman

We consider the nonlinear spatial evolution in the streamwise direction of slightly three-dimensional disturbances in the form of oblique travelling waves (with spanwise wavenumber kz much less than the streamwise one kx) in a mixing layer vx = u(y) at large Reynolds numbers. A study is made of the transition (with the growth of amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 1994). We have found a new type of transition to the nonlinear CL regime that has no analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ development. A nonlinear evolution equation is obtained which describes the development of disturbances in a regime of a quasi-steady nonlinear CL. We show that unlike the two-dimensional case there are two stages of disturbance growth after transition. In the first stage (immediately after transition) the amplitude A increases as x. Later, at the second stage, the ‘classical’ law A ∼ x2/3 is reached, which is usual for two-dimensional disturbances. It is demonstrated that with the growth of kz the region of three-dimensional behaviour is expanded, in particular the amplitude threshold of transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and therefore in the ‘strongly three-dimensional’ limit kz = O(kx) such a transition cannot be realized in the framework of weakly nonlinear theory.


1971 ◽  
Vol 12 (3) ◽  
pp. 365-377 ◽  
Author(s):  
Frank Harary

Ising [1] proposed the problem which now bears his name and solved it for the one-dimensional case only, leaving the higher dimensional cases as unsolved problems. The first solution to the two dimensional Ising problem was obtained by Onsager [6]. Onsager's method was subsequently explained more clearly by Kaufman [3]. More recently, Kac and Ward [2] discovered a simpler procedure involving determinants which is not logically complete.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Author(s):  
Arno Koning ◽  
Johan Wagemans

Symmetry is usually easier to detect within a single object than in two objects (one-object advantage), while the reverse is true for repetition (two-objects advantage). This interaction between regularity and number of objects could reflect an intrinsic property of encoding spatial relations within and across objects or it could reflect a matching strategy. To test this, regularities between two contours (belonging to a single object or two objects) had to be detected in two experiments. Projected three-dimensional (3-D) objects rotated in depth were used to disambiguate figure-ground segmentation and to make matching based on simple translations of the two-dimensional (2-D) contours unlikely. Experiment 1 showed the expected interaction between regularity and number of objects. Experiment 2 used two-objects displays only and prevented a matching strategy by also switching the positions of the two objects. Nevertheless, symmetry was never detected more easily than repetition in these two-objects displays. We conclude that structural coding, not matching strategies, underlies the one-object advantage for symmetry and the two-objects advantage for repetition.


Author(s):  
Senthuran Ravinthrakumar ◽  
Trygve Kristiansen ◽  
Babak Ommani

Abstract Coupling between moonpool resonance and vessel motion is investigated in two-dimensional and quasi three-dimensional settings, where the models are studied in forced heave and in freely floating conditions. The two-dimensional setups are with a recess, while the quasi three-dimensional setups are without recess. One configuration with recess is presented for the two-dimensional case, while three different moonpool sizes (without recess) are tested for the quasi three-dimensional setup. A large number of forcing periods, and three wave steepnesses are tested. Boundary Element Method (BEM) and Viscous BEM (VBEM) time-domain codes based on linear potential flow theory, and a Navier–Stokes solver with linear free-surface and body-boundary conditions, are implemented to investigate resonant motion of the free-surface and the model. Damping due to flow separation from the sharp corners of the moonpool inlets is shown to matter for both vessel motions and moonpool response around the piston mode. In general, the CFD simulations compare well with the experimental results. BEM over-predicts the response significantly at resonance. VBEM provides improved results compared to the BEM, but still over-predicts the response. In the two-dimensional study there are significant coupling effects between heave, pitch and moonpool responses. In the quasi three-dimensional tests, the coupling effect is reduced significantly as the moonpool dimensions relative to the displaced volume of the ship is reduced. The first sloshing mode is investigated in the two-dimensional case. The studies show that damping due to flow separation is dominant. The vessel motions are unaffected by the moonpool response around the first sloshing mode.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Mohamed ◽  
A. Erdman ◽  
G. Timm

Previous biomechanical models of the penis that have attempted to simulate penile erections have either been limited to two-dimensional geometry, simplified three-dimensional geometry or made inaccurate assumptions altogether. Most models designed the shaft of the penis as a one-compartment pressurized vessel fixed at one end, when in reality it is a two-compartments pressurized vessel, in which the compartments diverge as they enter the body and are fixed at two separate points. This study began by designing simplified two-dimensional and three-dimensional models of the erect penis using Finite Element Analysis (FEA) methods with varying anatomical considerations for analyzing structural stresses, axial buckling and lateral deformation. The study then validated the results by building physical models replicating the computer models. Finally a more complex and anatomically accurate model of the penis was designed and analyzed. There was a significant difference in the peak von-Mises stress distribution between the one-compartment pressurized vessel and the more anatomically correct two-compartments pressurized vessel. Furthermore, the two-compartments diverging pressurized vessel was found to have more structural integrity when subject to external lateral forces than the one-compartment pressurized vessel. This study suggests that Mother Nature has favored an anatomy of two corporal cavernosal bodies separated by a perforated septum as opposed to one corporal body, due to better structural integrity of the tunica albuginea when subject to external forces.


Author(s):  
Spyros A. Karamanos ◽  
Charis Eleftheriadis

The present paper examines the denting deformation of offshore pipelines and tubular members (D/t≤50) subjected to lateral (transverse) quasi-static loading in the presence of uniform external pressure. Particular emphasis is given on pressure effects on the ultimate lateral load of tubes and on their energy absorption capacity. Pipe segments are modeled with shell finite elements, accounting for geometric and material nonlinearities, and give very good predictions compared with test data from non-pressurized pipes. Lateral loading between two rigid plates, a two-dimensional case, is examined first. Three-dimensional case, are also analyzed, where the load is applied either through a pair of opposite wedge-shaped denting tools or a single spherical denting tool. Load-deflection curves for different levels of external pressure are presented, which indicate that pressure has significant influence on pipe response and strength. Finally, simplified analytical models are proposed for the two-dimensional and three-dimensional load configurations, which yield closed-form expressions, compare fairly well with the finite element results and illustrate some important features of pipeline response in a clear and elegant manner.


2011 ◽  
Vol 675-677 ◽  
pp. 891-899
Author(s):  
Qi Chang He ◽  
J.Z. Zhou

Starting from the requirement that the principle of determinism be satisfied, two constitutive inequalities are derived for one-dimensional strain- and stress-based continuum damage models. The one-dimensional constitutive inequality corresponding to the strain-based formulation turns out to be much less restrictive than the one associated to the stress-based formulation and is extended to the three-dimensional case. This extension gives a general constitutive inequality for the damage of elastic-brittle materials.


Sign in / Sign up

Export Citation Format

Share Document