scholarly journals Effect of Polyester Fiber on Air Voids and Low-Temperature Crack Resistance of Permeable Asphalt Mixture

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jin-rong Wu ◽  
Fei Li ◽  
Qin-yong Ma

With the rapid development of asphalt pavement, the drainage capacity of asphalt pavement is becoming more and more demanding. Therefore, it is imperative to study the permeable asphalt mixture. The air voids and the connected air voids are the main factors affecting the drainage function and low-temperature performance of asphalt pavement. In order to solve the drainage and low-temperature cracking problem, it is proposed to incorporate a certain amount of polyester fiber into the permeable asphalt mixture. This paper studies the air voids and low-temperature performance of asphalt mixture with different polyester fiber contents. It is concluded that with the increase of polyester fiber content, both the air voids and the connected air voids decrease first and then increase and reach the minimum value when the polyester fiber content is 0.4%. At this time, the low-temperature crack resistance of the permeable polyester fiber asphalt mixture is also the best.

2013 ◽  
Vol 734-737 ◽  
pp. 2287-2291 ◽  
Author(s):  
De Dong Guo

Fiber asphalt concrete has been more and more widely used in highway construction. For analyzing high and low temperature performance of fiber asphalt mixture, rheological properties of fiber asphalt mortar were studied through indoor test. Impact of Rheological properties of the fiber asphalt mortar on high temperature and low temperature properties of asphalt mixture was analyzed. Results showed that the larger fiber content was, the better performance of asphalt mixture's high temperature stability, fiber asphalt mortar rut factor and rutting tests results of asphalt mixture were linear correlation, reflecting the high temperature performance of asphalt mixture; With the increase of fiber content, variation of stiffness modulus, creep rate indicators and mixture low temperature performance was consistent, and rheological properties of fiber asphalt mortar could characterize low temperature performance of asphalt mixture.


2014 ◽  
Vol 587-589 ◽  
pp. 1332-1336
Author(s):  
Jun Qing Chen ◽  
Ai Jun Li ◽  
Mei Qian Jin ◽  
Min Nan Zheng ◽  
Wan Yi Yang

Prone to low temperature cracking of asphalt pavement problems in cold areas, testing BBR on 70# base asphalt and 4 kinds of different dosage of SBS modified asphalt, testing TSRST on their mixture to appraisal the low temperature performance of SBS modified asphalt mixture. Results show that compared with the temperature stress of internal cracks of base asphalt and SBS modified asphalt mixture not rise significantly. But the stress of SBS asphalt mixture growing slow and the temperature of cracking reduce obviously; it means the low temperature performance improved. This shows that SBS improves the toughness and reduced the modulus of asphalt mixture in low temperature, rather than increasing the tensile strength of mixture specimens.


Author(s):  
Jinrong Wu ◽  
Zhaoxu Niu ◽  
Haiyan Chen

Abstract In order to study the influence of different aging conditions on the low-temperature crack resistance and water stability of polyester fiber asphalt mixture. Prepare standard Marshall specimens of asphalt mixture with 0.4 % polyester fiber doping, and carry out water immersion Marshall test and low temperature splitting test through indoor asphalt mortar aging, asphalt mixture short-term aging and long-term aging. The results show that: under the three aging conditions, when the water immersion and low temperature time are fixed, with the increase of the aging degree, the water stability and low temperature crack resistance of the asphalt mixture decrease. When the immersion time is 2 h, the stability of asphalt mortar aging and short-term aging decreases by 6.0% and 11.8%, respectively, compared with unaging, but the long-term aging is only 3.6% lower than the short-term aging. When the temperature is -5℃, the split tensile strength of asphalt mortar aged and short-term aged increases by 4.24% and 14.35%, respectively, compared with unaging, while long-term aging only increases 4.18% compared with short-term aging. This indicates that the short-term aging condition has the most significant effect on the water stability and low-temperature crack resistance of polyester fiber asphalt mixes. At the same time, this study established a regression equation between the test temperature and the low temperature evaluation index through quadratic fitting (the correlation coefficient is 0.960-0.998), and the regression relationship can be used to estimate the low temperature evaluation index at different test temperatures.


2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


2012 ◽  
Vol 251 ◽  
pp. 436-441 ◽  
Author(s):  
Wei Liu

The warm mix regeneration technology has prominent economical efficiency that can not only reduce the secondary aging of new asphalt and old asphalt in RAP materials during the production process, but also improve the use proportion of RAP materials. As for the increase of RAP dosage and the warm mix additive added to influence the plant regenerated asphalt mixture performance, this paper adopts two kinds of warm mix additive for the test and analysis of the warm mix regenerated asphalt mixture performance with 20% and 60% RAP. The results indicate that magnify the proportion of RAP percentage makes contribution to further improve high-temperature performance of the regenerated mixture, but it has adverse effects on water resistant damage performance and low-temperature performance. At the same time, adopting the warm mix additive can significantly reduce the adverse effect, so warm mix regenerated technology has better feasibility.


Sign in / Sign up

Export Citation Format

Share Document